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ABSTRACT

The objects of this report are 1) a study of the dual displacement-
stress function finite element method in matrix form, with particular

consideration of a number of different types of boundary conditions,

and 2) implementation of the method as a computer system for the solu-

tion of both plate stretching and plate bending problems. The computer

system is developed as an addition to the general capabilities of the

Finite Element Analyzer, which in turn is a part of the problem-oriented

Structural Design Language (STRUDL) within the Integrated Civil Engin-

eering System (ICES).

The finite element displacement method as applied to stretching

of triangular plate elements is presented with particular reference to

formulation of the system equations in matrix form. The dual stress

function method for bending of triangular plate elements is then pre-

sented in light of the displacement method. Specific consideration is

given to a number of different types of boundary conditions of the

stretching and bending problems and the matrix modifications necessary
for the introduction of these conditions to the system of equations. The

additional problem-oriented language commands added to the Finite
Element Analyzer for use in solving dual plate stretching and bending

problems are presented in a partial user's manual intended as a sup-

plement to the Finite Element Analyzer User's Manual.

The actual programming of the system has been done in Command

Definition Language (CDL) and ICETRAN (ICES-FORTRAN) as part of

ICES. Detailed system documentation (data structure, data COMMON

storage, program descriptions, and program listings) is presented in

the appendices.

The initial implementation of the system is in a limited form,

but its flexibility and modularity allow for easy modification and soph-

istication at a later date.



-4-

TABLE OF CONTENTS

Page

FOREWORD ......................... 2

ABSTRACT ...................... 3

CHAPTER 1 - Introduction and Objectives ........... 6

CHAPTER 2 - Formulation of the System of Equations ..... 8

2.1 Introduction ............... 8

2. 2 Properties of the Orthotropic Triangular

Finite Element ............. 9

Z. 3 Derivation of the Equations for the Plate

Stretching Problem ........... i0

2.4 Duality Between the Problems of Plate

Stretching and Plate Bending ........ 18

CHAPTER 3 - Boundary Conditions ............. 23

3.1 Introduction of Boundary Conditions for

the Plate Stretching Problem ........ 23

i) Stress Boundary Conditions ....... z3

Z) Displacement Boundary Conditions .... 23

3) Mixed Boundary Conditions ....... 24

4) Elastic Boundary Supports ....... 26

5) Plate Bounded by an Edge Beam ..... 28

6) Strain Boundary Conditions ....... 31

7) Dislocations in Multiply Connected Plates 38

3.2 Introduction of Boundary Conditions for

the Dual Plate Bending Problem ...... 41

i) Displacement Boundary Conditions .... 41

2) Stress Boundary Conditions ....... 42

3) Mixed Boundary Conditions ....... 43

4) Elastic Boundary Conditions ...... 51

5) Plate Bounded by an Edge Beam ..... 52



CHAPTER 4 -

APPENDIX 3 -

-5-

Computer Implementation of the System .....

Page

56

4.1 Introduction .................. 56

4.2 Description of the Problem-Oriented
Language Commands ............ 58

CHAPTER 5 - Conclusions and Recommendations ........ 71

REFERENCES ......................... 73

APPENDIX 1 - Additions to the Finite Element Analyzer
Data Structure ................. 75

APPENDIX 2 - Revised and Extended COMMON Map ....... 80

Program Documentation ............. 85

A3-1 General Organization ........... 85

A3-2 Input Programs Documentation ........ 85

A3-3 Element Stiffness Matrix Generation

Programs ............... 111

A3-4 Non-symmetric Global Stiffness
Matrix Generator ............. 116

A3-5 Solver Interface Program ......... 118

A3-6 Boundary Condition Programs ....... 119

A3-7 Backsubstitution Programs ........ 123

APPENDIX 4 - Table of Symbols ................ 130

APPENDIX 5 - List of Figures ................. 136

APPENDIX 6 - List of Tables ................ 137

APPENDIX 7 - Program Listings ................ 138

APPENDIX 8 - Programmer's Information ........... 200

APPENDIX 9 - Sample Problem ................ 207



-6-

CHAPTER 1

Introduction and Objectives

The finite element method for the solution of structural mechanics

problems has been the subject of considerable research effort during the

past decade. First developed in the aircraft industry for the analysis

of complex airplane fuselages, the method has spread more recently into

mechanical and civil engineering work, including very recently fluid mechanics

and soil mechanics. A very good brief history of the method is given by
Ferrante (Ref. 1).

In the finite element method, the structural continuum is replaced

by a finite number of regularly shaped three-dimensional volume elements
or two-dimensional surface elements, and these elements are joined

together at a finite number of common points called nodes. Then certain
characteristic structural behavior quantities, usually displacement components,

of any point within an element are assumed to be some polynomial function
of their values at the nodes. This idealization reduces the differential

equations of behavior to an approximate set of algebraic equations that are

more readily solvable. Because the number of resulting unknowns and

equations is very large for any meaningfully accurate application of the

finite element method, the use of a digital computer for solution of the

equations is a necessity. Thus the development of the finfte element
method has paralleled the develo/_ment Of the digital computer and its

introduction to the solving of engineering problems. A more thorough

discussion of the general finite element and its philosophy is presented

by Clough (Ref. 2), Connor (Ref. 3), or Lundberg (Ref. 4).

In the analysis of plate and shell structures by the finite element

method, the unknown nodal structural behavior quantities are generally

taken as the displacement components associated with the two or three

coordinate directions. This procedure results in the use of a stiffness

matrix when the governing equations are expressed in matrix form. With

the use of triangular elements and displacements that are linear functions
of the nodal displacements and element coordinates, successful results are

reported by Clough (Ref.2) for the problem of plate stretching, but some

difficulties exist in applying the same method to the problem of plate

bending (Ref. 4 and 6).
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Elias (Ref. 5) has studied the mathematical duality that exists

between the problems of stretching and bending of plates and has developed

(Ref. 7) a finite element stress function method for plate bending that is

the dual of the well-_ested displacement method for plate stretching. In
this dual method, nodal values of two stress functions are used as the

unknown quantities, resulting in a flexibility matrix dual of the stiffness

matrix of the stretching problem.

The objectives of this thesis are to review and continue the study
of the dual finite element stress function method, with particular reference

to formulation of all equations in matrix form and consideration of a number

of different types of boundary conditions, and to implement the method as

a computer system for the solution of plate bending and stretching problems.

The system takes the form of capabilities added to a general Finite

Element Analyzer developed in the Department of Civil Engineering of

MIT by Ferrante (Ref. 1). It is written as a problem oriented-language,

which puts input and output in the language of the structural engineer and

minimizes the amount of computer knowledge required of the user. The

system's organization as a set of load modules will allow relatively

easy modification and sophistication at a later date.
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CHAPTER 2

Formulation of the System of Equations

2.1 Introduction

The finite element discretization method studied in this thesis

consists of subdividing the plate structure into flat triangular elements

with three nodes coinciding with the three vertices of the triangle. The

two-dimensional elements represent the middle surface of the three-

dimensional plate and coincide with the x-y plane of a right-handed x-y-z

cartesian coordinate system.

In this chapter the geometric and material properties of the

triangular element are presented first. Then the derivation of the

equations for the plate stretching problem (Ref. 7) is reviewed and expressed

in matrix form. Finally, the duality between the problems of plate bending

and plate stretching is reviewed and the equations for the plate bending

problem are obtained from those of the plate stretching problem via the

duality correspondence. In both problem cases, a discussion of the

solvability of the resulting sets of equations is presented.



-9-

2.2 Properties of the Orthotropic Triangular Finite Element

The triangular finite element n (figure 1) has nodes n 1 = d, n 2 -- e,

and n 3 = f ordered counter clockwise around the element, with cartesian

coordinates (xi, yi ) for node i (i = d, e, f) referred to some global reference

frame. The following notation will be adopted:

= - + xfa d x e

bd = -Ye + Yf

(I)

Quantities a e, af, b e, and bf are then obtained by permuting d, e, and f

in Eqs 1. Note that a i, b. are the cartesian components of side (i), opposite1
node i, considered as a vector oriented counter clockwise (as shown in

Fig. 1).

The area of element n is then

An -- i/2 l-Xdbd- Xebe - xfbf I (2)

The thickness of the element n will be taken as the average thickness

of the plate in the region covered by element n:
OF

! [ h(x,y) dxdy (3)
h n " _-1

JJ
n A

n

The material of the triangular finite element is assumed to be

homogeneous, linearly elastic, and orthotropic, with axes of orthotropy

coinciding with the global reference axes. Thus the following properties

characterize the element:

E , E
x y

/2 , V
x y

x y

G

Young' s Moduli

Poisson's coefficients

coefficients of thermal expansion

shear modulus

In addition,

v E = v_,_E (4)
x x yy
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exists for an orthotropic material.

2.3 Derivation of the equations for the Plate Stretching Problem

The plate element n (Fig. 2) is subject to a distributed surface

load vector

P " Px 1 + Py3,

edge load intensity vectors (force/unit length)

(5)

(i = d, e, f), (6)

concentrated nodal forces

i = FxiT + Fy iT (7)

and a temperature change AT . AT (x,y) causing initial strains which, in turn,

are resisted by initial stresses

-E h -E hAT
N ° _- x (_O+v _o) =_ _ x (o_ +v _.)

x 1-v v x x y 1-v v x x y
xy xy

-E h -E hAT

N°y _ i-vvY'" (EO+vy Y  O)x * i:d Yv (_y +v yx°t )
xy xy

(8)

The plate element is in equilibrium under these loads and stresses. The

displacement vector

_'(x,y) - u(x,y)T" + v(x,y)T (9)

describe6 the displacement of a point on the middle surface of the element.

If it is assumed that the displacement at any point in the element is a linear

function of the displacements at the three corner nodes, i.e., that the element

is in a constant state of strain, then the behavior of the plate element can be

completely characterized by the six nodal variables u i, v i (i - d, e, f). Thus,

the potential energy of the element, expressed as a functional of the vector

displacement function _ (x,y), can now be expressed as a function of six

scalar variables.
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TRIANGULAR FINITE ELEMENT.



-12-

7:n -- 7rn(u d, Vd, ue, ve, uf, vf) (i0)

-- potential energy of element n

The variational principle of stationary potential energy then requires

that the potential energy of element n be stationary with respect to

variations of the six variables. Mathematically, this requirement takes

the form

8u.
1

1

0

= 0

(i-d,e,f) (II)

The details of this variational formulation of the plate stretching problem,

including expressions for strain energy density and potential energy, are

given in Ref. 7. Only the resulting expressions for Eqs. (11) will be

presented here.

When the expression for rn given in Ref. 7, Eq (49), in terms of

the unknown nodal displacements, applied loadings, and geometric and

material properties of element n is substituted into Eqs (11), there results

a set of six force-displacement relations for the element

KXX u +KXX u + xx + K%Vdid d le e Kifuf

Pn" +Rn + _x +Fxl xi i xi

+ K.XYv + K .X_vfle e

(i - d, e, f)

(12)

where

+ KY_uf + KYYv, + K.YYv + KYiYv fKYidUd + KYXue id o le e

pn. + R n. + _n. + F
yl yl yl yi

(i - d,e,f)

(13)

- "I = K.XX. (14)K xx - D mExb.b. +G(l-v v ) aia jiJ n L i 3 xy J
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KY_ = D n [Eyaiaj + G (1-UxVy)bibj] = KY_..p

(i, j -- d,e,f)

(16)

(17)

h
nD =

n 4A n (1 - UxVy)

0"rl Pr i dAn

Rnri = _k 1 _k_k NkskdSkr

(k = two edges adjacent to node

i; s k oriented toward node i)

0 n = -.---/-1 N dA n
xi 2A n

n a.= -1 N ° dA
yi 2A n y n

i =d,e,f

r =x,y

*i = d,e,f

(18)

(19)

(20)

(21)

(22)

Thus, pn pn. are the generalized nodal forces due to the distributed surface
xi' yl

_:n R n are the generalized nodal forces due to the edge load

load; Rxi , yi on On .
intensities; and xi' yl are the generalized nodal forces due to the temper-

ature change. The total generalized nodal loads (right hand sides of Eqs.

(12) and (13))will be denoted by Sn. and S n in what follows
El yi

FLet S n be the total generalized nodal load column

Let u. - .(ui '_ii be the nodal displacement matrix (i =d,e,f).matrix:

Then Eqs (12) and (13) can be expressed as three matrix equations

nd nf = Sn. (i =d,e,f) (23)K Ud + K n O + K Uf .-1
-"le e

where

K.n. = [_KX_" LKXiYl (i,j =d,e,f )

Ka-i I
L U l _JJ

Symbols _i are the dimensionless triangular coordinates. They are

explained on page 5 of Ref. 7.

(24)
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-Knl isnots metric,because but - The
superscript n denotes the element to which K.n. belongs•

Now consider a typical node i in a finite element representation

of a continuous plate (fig. 3). Node i is common to elements k, 1, m, n and

p, and is connected through these elements to nodes q,r,s,t and w.

Equation (23) can be considered as the contribution of element n to the

total generalized nodal force at node i, if i, s, and t replace d, e, and f.

Thus the total generalized nodal force at node i due to all elements incident

upon it would be

S i : E (S_- F i) + F i (j = k, l,m, n, p) (25)

/

J

.i
The definition of S J. includes the concentrated nodal force F.. Since this

'_1 d'*l 4

force acts only once at each node, it must be subtracted from S J. before

the summation in Eq (25) and added back in after the summation.

The total matrix force-displacement relation for node i becomes

( _ii ) U i + (K + ) U + _" ) U"S
j Qlr --r

Kp k (K k +

Eqs (26) can be generalized to apply to any node in the plate. The

system of equations resulting from the application of Eqs (26) to every

node of the structure is (in supermatrix form)

K U = S (27)

or explicihly

l

--Kll K12 _lJ

K21 K22 " _2n

Ko 0

P I S

u 2

U.

-j

, I

$i

s_2

= S.
"3

2n

l

(26)
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FIGURE 3. A TYPICAL NODE (i) IN A TRIANGULAR

FINITE ELEMENT REPRESENTATION OF

A PLATE.

Y

Z

(TANGENT TO
BOUNDARY)

GLOBAL REFERENCE
FRAME

n (OUTWARD NORMAL
TO BOUNDARY )

FIGURE 4. PLATE BENDING PROBLEM NOTATION.
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where n now equals the total number of nodes in the finite element repre-

sentation. The assembly of the supermatrices K_ and S follows the well-

established procedure of the direct stiffness method (which follows from

Eqs (25):

1) For element n, with nodes n 1, n 2, and n3:

a) K n in super-row n i, super-column n. of K--n.n. 3 "

1 j (i,j= 1,2, 3)

b) (S n - --Fn.) in super-rown, of S (i = 1,2,3)-n. 1 J'_
1 1

(28)

(29)

Step 1) is repeated for every element in the structure•

2) F i in super-row i of F (i = 1, 2, 3 ...... n) (30)

Since K n. ,K n )T
"D = _--ji , the resulting stiffness matrix K is symmetric,

and thus only half of it (the diagonal plus elements below the diagonal)

need be assembled.

The system of equations (27) is singular, i.e., there exists a non-

trivial solution to the system where -,S = 0, and thus I K = 0. The non-trivial

solutions U ° are the nodal displacements of a rigid-body motion, which was

not suppressed in the preceeding development. To fix the plate against

rigid-body motion, the displacements of some node r (Ur,Vi.) plus the

rotation about that node must be known• Knowing the rotation is equivalent

to knowing the displacement of another node s in the direction perpendicular

to the line joining r and s. Thus three displacement components must be

known to suppress rigid-body motion of the plate. These displacements are

then the minimum boundary conditions that must be specified in order to

solve Eqs (27). Once they are specified, they may be moved over to the

right hand side (known side), and the number of unknowns reduced by three.

Thus three equations from among Eqs (27) may be eliminated. The resulting

system of 2n-3 equations is non-singular and may be solved by inverting the
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reduced K matrix or any other convenient method.

• The generalized nodal forces R n. and R n. resulting from edge stress
_'Xl "yl

resultant intensities N and N contribute nothing to the total generalized
nx ny

nodal force S. from an interior edge (an edge common to two elements) because

the stress resultants are equal in magnitude but opposite in direction for

the two elements joined along the edge. In the initial asseint_ly of the S matrix,

the contributions of R n. can be ignored at all nodes because the contribution

is zero for an interior edge and the contribution for a boundary edge will be

added later during the explicit treatment of boundary conditions. Thus,

initially¢ S. = P. + O. + F. (i = 1 2 ..... n).
°'I _'i --i _'I'
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2.4 Duality Between the Problem of Plate Stretching and

Plate Bending

Consider a plate in the x-y plane (Fig. 4), in equilibrium under

an applied surface load vector intensity

p = pz(X,y) k

boundary effective shears of vector intensity

= Qne(S)

and boundary bending stress couples of vector intensity

M = M (s) s .
nn

For small displacements, this system of loads will produce primarily

bending in the plate, with negligible stretching.

The solution of the plate bending problem can be considered

as composed of two parts: 1) a particular solution of the equilibrium

equations that equilibrates the applied surface load without necessaril _

satisfying comparability or the boundary conditions, and 2) a self-

equilibrating homogeneous solution that compensates for the particular

solution in such a way that the total or general solution (sum of homo-

geneous and particular) satisfies equilibrium, compatibility, and the

boundary conditions.

The equilibrium equations for plate bending are

+ M - Qx = 0Mxx, x yx, y

+ M - Qy = 0Mxy, x yy, y

+Q +Pz = 0Qx, x y,y

where
,r

couples,

denotes differentiation with respect to r, the M's are stress

and the Q's are shears, as defined in Fig. 5.

A particular solution of Eqs. 34-36, denoted by superscript p,

is taken as

(31)

(32)

(33)

(34)

(35)

(36)
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Pz (x,y)

Qx

X

dy

h

FIGURE 5. DEFINITION OF SHEARS AND STRESS
COUPLES ACTING ON THE DIFFERENTIAL
PLATE ELEMENT.
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M p = M p =
xy yx

0

M p = -D (K + v K x)
xx x y x

M p = -D (K + v K )
yy y x y y

QP = M p
X XX_ X

P = M p
Qy yy, y

(37)

(38)

(39)

(40)

(41)

where

E h 3
XD =

x 12( I - VxVy)

E h 3

D = , Y
y 12( 1- v u )

xy

and K x, K Y
equation.

are particular solution functions satisfying the differential

Eo ]x(Ky + YxKx) ,xx L y Y 'yy

(42)

(43)

(44)

The stress couples and shears of Eqs. 37-41 are those that would occur

in two families of strips parallel to the coordinate axes, arbitrarily

supported and acting independently of each other. The load Pz may then

be divided arbitrarily between the two families of strips. The reason

for introducing the two functions K and K will become apparent in
x y

what follows.

The variables of the bending problem can be expressed as sums

of the particular solution portion and the homogeneous solution portion;

for example

Mxx = M p + M*
XX XX

(45)

where * indicates a quantity associated with the homogeneous solution.
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Representing the variables in this way, a duality exists between the

equations of plate stretching and plate bending (Ref. 7 ). In

particular, the finite element displacement method of solution of the

plate stretching problem, developed in the previous section, has a

dual stress function method of solution for the bending problem. The

force-displacement relations of the stretching problem become

rotation-stress function relations of the bending problem upon

substitution of the corresponding dual variables and constants. The

correspondence of this duality is summarized in Table 1.

The resulting system of equations for solution of the plate

bending problem becomes, in supermatrix form

where

K T U w = S' (46)

K' = bending "flexibility" matrix dual
of the stretching stiffness matrix (47)

U' = column matrix of nodal values of
the stress functions U and V (48)

81 column matrix of total generalized
nodal rotations, dual of the gen-
eralized nodal force matrix (49)

This system is also singular and the non-trivial solution U '° of the

homogeneous system (S' = O) are dual of the rigid-body displacements

of the stretching problem. Just as the rigid-body displacement yields

zero strains, the solutions U_'° for the stress functions yield zero

stress couples and shears.
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TABLE I

Duality Between the Problems of Stretching and Bending

Stretching ] Bending
I I i i I I i I

Equations:

Equilibrium

Compatibility

Stress-Strain

Strain- Displacement

Stress- Stress Function

Compatibility

Equilibrium

Stress- Strain

Stress- Stress Function

Curvature- Displacement

Material Properties:

Exh, Eyh, Gh

VX, 12Y

Problem Variables :

U, V

N ° N °
x y

Px' PY

N
Nxx, Nxy, yy

exx, exy, eyy

Nnx, N ny

e ss, × (boundary strain
and in-plane
curvature)

Matrices:
I

-Kij' Pi' Ri'-ei, gi

(i = 1,2 ...... n)

I

_D-I _D-I _(Gh3/3) -
y x

-V X' -7/Y

I

U, V (stress functions)

-Xy, -x° x (thermal curvatures)

Kx, x, Ky,y

- x yy, Xxy, - X xx
(cartesian curvatures)

M * *
yy, -Mxy' Mxx

-× X (boundary
sy' sx curvatures)

Mnn' Qne

Kij, El, _% .el,
(i = 1,2.....n)



-23-

CHAPTER 3

3.1 Introduction of Boundary Conditions for the Plate

Stretching Problem

1) Stress Boundary Conditions:

and N contribute to the generalizedKnown edge load intensities Nnx ny

nodal force at the boundary nodes. Thus at a node i joining boundary seg-

ments (boundary element edges) m and n

m n

1 ; N sds f NnsdsRri _rn r m m _n r n n

0 0

(r =x,y ; s m, s n oriented towards nodei)

Then R...1= {Rxi Ryii. is added to -1S" for every node i along portions of

the boundary on which edge load intensities are known.

If the acuta! edge load intensities, functions of positions along the

boundary, are approximated by a linear variation between boundary nodes,

then they may be completely specified by their values at the boundary nodes,

Nxi and Ny i. .Usingthis approximation, the integrals of Eqs.(50) are

evaluated to give

= Lm (Nrj + 2N .) + £nRri T rl T (Nrh + 2Nri) (51)

where j and h are the nodes at the other ends of segments m and n,

respectively.

2) Displacement Boundary Conditions:

If the two componenets of displacements at a node i (u i, v i) are

known, then there are two less unknown nodal displacements and the

corresponding two equations at node i (Eqs(26)) can be dgleted from the

system of Eqs (27). Also, terms involving U i in the other equations of

system (27) are known and can be moved to the right hand side and added

to S.. The modifications to the stiffness and load matrices for the-1

introduction of known pairs of displacements at a node i are then

accomplL4hed as follows:
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a) in K:

Kji =_ 0

j # i (52)

j = 1,2,. .n
(53)

Kii _ I 2 (2 x 2 unit matrix) (54)

b) in S:

S. :=_S. - K..U. j _ i, j = 1,2 .... n (55)
--j -j --j1~i

s.

where :_ means "is replaced by. "

(56)

The matrix multiplications shown above and in later sections of this

chapter are used as notational devices to arrive at a more clear, concise

presentation of the theory. In the actual computer solution of such problems,

the matrix multiplications are usually not performed explicitly, and in fact

many of the matrices defined in this chapter are not actually used explicitly

in the computer.

3) Mixed Boundary Conditions:

Consider the case of a boundary node i at which one component of

displacement is known in a direction r (u r) and one component of edge

stress resultant is known in the direction perpendicular to r along the edge

segmentsadjacent to node i (Fig. 6). The angle _ relates the r direction

to the global x-axis, positive from x to r. The treatment of these mixed

boundary conditions follows the well-known procedure given below:

a) Define five matrices Ei, G i, ui, _ , and _i'

Ei = [_ _] _i =Ii0 _I u'_ = I_ ri}

_" in_ cos_J _i Rq i

(57)

(58)

where q is the direction perpendicular to r, and Rqi is determined from
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Y

o

q

_X

FIGURE 6. NOTATION FOR MIXED
BOUNDARY CONDITIONS.

(n) _n

o h. _x ,. "_°'_

FIGURE 7. NOTATION FOR THE EDGE
BEAM BOUNDARY.
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Eq. (50) or Eq. (51) with r replaced by q.

b) Perform the following modifications upon the matrices K and S:

S. =:_S.- K..Rlu::
-3 -j --31 -- -i

(j = 1,2, .... n _i)

(59)

(60)

ii) _ii =_ (-Ei_i' T) Kii(RiEi) + _i (61)

=_:' R i, T R i * *S. + E. (Si - Kii u i) + u. (62)
"i -i "i-- -- --i

iii) Kij _ (EiRi' T) _ij (63)

(j = I, 2..... n _ i)

The solution of Eqs (27) will then yield _i = {Uri Uqi} for the displacements

at node i. To obtain the displacements referred to the global axes, U i

must be multiplied by R i, the rotation matrix from the r-q axes to the x-y axes.

k
YY

4) Elastic Boundary Supports:

If a boundary of the plate is supported elastically, the stress

resultants on the boundary edge will be functions of the unknown edge

displacements. Thus the generalized nodal forces due to these edge stresses

will be functions of the unknown nodal displacements and must be moved to

the left hand side of Eqs. (27).

If the elasticity of the boundary support is specified by kxx, kxy, and

(all functions of position along the boundary) such that

N = k (us - u) + k (vs - v) (64)
nx xx xy

N = k (us - u) + k (vs - v) (6,5)
ny yx yy

S
where u s and v are the known displacements of the elastic boundary support,

then the generalized nodal forces at each node i along the elastic boundary

become
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= k=h,i,j_ hick x (u_- u k) + k =h,_i,jkXY(v_ - Vk)

= _'kY_(u_-Uk)+ d_-_'ik'_YY/vS- Vk)k

(66)

(67)

where h and j are the nodes before and after i on the boundary.

matrix form, Eqs. (66) and (67) become

S

R--i : _ih(U_ - U h) + --_ii(uS- Ui) + _ij(Uj - Uj)

where

_--ir _ ixx Ihix_rl-"

ir I "-irJ

(r = h, i, j)

£ £

;m S2dSm+ 1 fn_xx = 1
ir T kxx m £2

m o n o

k S2ds
xx n n

£
m

xx k S _(Im - Sm)_ dS
ih 22 xx m m

m o

n

xx_ i ; k S (In - Sn) dSij _ _ xx n n

n o

In

(68)

(69)

(70)

(71)

(72)

and m and n are the segments before and after node i; (s m and Sn are

oriented towards node i). Quantities_'._., _y.x and
ij ij

_.YY. are obtained from Eqs. (70) - (72) by using in turn k k and k
-- 13 xy' yx" yy

in the integrals.

Eqs. (68) require the following matrix modifications to K and S for

each row i along the elastic boundary:

a) in K:

Kih =!_ Kih +_'h

Kii :_ Kii + kij

(73)

(74)
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Kij :_ Kij + _ij
(75)

b) in S:

(76)

5) Plate Bounded by an Edge Beam:

If the plat e is supported by an edge beam, account must be taken of the

beam potential energy in the variational formulation of Eqs (27).

and N per
If the beam is loaded externally by stress resultants _x y

length of edge beam, they give rise to generalized nodal forces

F. = _ _ } at each node i along the edge beam, as determined by
-i _ xi yi
equations like Eqs (50). A portion of these nodal forces is resisted by

the edge beam and the remainder is transmitted to the plate elements. If

the portion resisted by the edge beam is denoted by A F i = _{AFxi AFy i.

at a node i, then R i, the portion transmitted to the plate, is given by

R. = F. - AF. (77)
_'I "i _'_I

Expressions for AF. in terms of the nodal displacements and the
"_'_ 1

beam material properties are determined from variations of the beam

potenetial energy with respect to the nodal displacements. Account must be

taken of the strain energy due to bending, which is expressed in terms of the

curvature of the edge beam. In the piece-wise linear boundary idealization

used here, curvature does not actually exist and must be interpreted

instead as the difference between side rotations of two adjacent boundary

segments.

by

Wn = _l£n [-(uj- u i) coS_bn- (v.-3 vi) sin_n]

The rotation of a segment n connceting nodes i and j is given

(78)

where _n is the angle from the x-axis to the outward boundary normal vector

n at segment n (Fig. 7). The curvature at node i is then expressed as the

difference of rotations of adjacent segments m and n

X 1. =(Wm -Wn)(/m 2+ £n) (79)
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Introducing the notation

dk
(EI)k- 1 + (EI)k

(80)

(81)

sin_ k -a k

Sk _k 2
_k

(82)

_ cos _k _ bk

Ck _k 2
£k

(83)

where A k is the cross-section area, E k the Young's modulus, I k the

moment of inertia about the z-axis, and £k the length of edge beam segment

k, which connects node k to node k + 1, the following equivalent stiffness

factors (Ref. 7 ) can be used to represent the beam behavior at a node i

(Fig. 8):

kxx = ,,hs_+,,.s? +d.(% +c,_2 +dhC_ +d.d?
11 11 1 3 1

kXXih = _h S2 - diCh(Ch + Ci) - dhCh (Ch + Cg)

k xx = aS 2 - d.C.(C h +C i) - d.d (C. +C.)
ig ii i i 3 i i 3

kXX
ig = dhCgCh

k xx = d.C C.
ik j i 3

k.x.Y
11 -_hShCh - a.S.C.ii i + di(Ci +Ch)(Si +Sh)

+ dhShC h - djSiC i

(84)

kXhY = _hShCh - diS h (C h + C i) - dhC h (S h + Sg)
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kx[ = _.S.C. - d.S.(C h +C i) - djCi(S i +Sj)13 11 i im

kxy
lg = dhSgCh

kxy = d.S.C.
ik j j I

Quantities kYq and kYYlq(q =g,h,i,j,k) are obtained from Eqs (84)

by interchanging x and y and Sq and Cq. Using these stiffness factors,

the generalized nodal forces become
%--m

AF. = F.° + __j k. U

--- 1 --1 n=g,h,i,j,k ,--ln--n

(84)

(85)

where

k°

"_ln

in Irk

I --: l ;nq
(86)

andF °= [F ° F ° }--1 , xi yi are generalized nodal forces due to initial thermal

strains in the beam, given by (Ref. 7 )

F°xi = _nSn {_hO _ otisi_O_ ldi(Ch+Ci)(_h +_i)_o
(87)

F°xi = -ahCh_h + s.C.lIC°-i Idi(Sh + S.)l(£h+ £i)_(°

__ + o !djSi( _ + _.)_(.o+ dhSh(_g Ln)_h + 2 i 3 3

where E. ° is an axial thermal strain due to a uniform temperature change
1

O

in the beam and H i is a curvature in the x-y plane due to a temperature

differential between the inner and outer faces of the beam.

Eqs. (85) result in the following modifications to K and S for each

node i on the edge beam boundary:

(88)

d
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a) row of i of K:

_iq :_ --Kiq + kiq (q = g,h,i,j,k) (89)

b) row of i of S:

- F?+}.Si=>Si -i (90)

6) Strain Boundary Conditions:

Consider a portion of the plate boundary along which externsional

strain and in-plane curvature are known. In the finite element idealization

used here, displacements vary linearly between nodes. Thus the boundary

extensional strain ( _ss ) is constant in any boundary segment and each

segment remains straight after deformation. As mentioned during con-

sideration of edge beams, the curvature is then defined only at each node

and is the difference between the rotations of the two adjacent boundary

segments. Thus strain boundary conditions take the form of an extensional

_train prescribed for each segment and a curvature prescribed for each

node. Then

• n = - sin'_n (Un+l-Un) +

for a segment n joining nodes n and n+l.

curvature at node n becomes

x
n

cos _n (Vn+l-Vn)

Using Eqs (78) and (79),

2 [£n +/n-1 _n (Un+l-Un) c°S_n

1 E (Un-U ) c°S@n-
_n-1 n-1 l

where segment n-1 joins node n-1 to node n.

the

-- (Vn+l-Vn) sin_n]

-- (Vn-Vn-l)sin4_n-l_ I

If the total number of nodes along the strain portion of the boundary

(including the two end nodes) is s, then there are 2s unknown nodal displace-

ments. One equation like (91) can be written for each segment and one

equation like (92) can be written for each node except the two end nodes, for

a total of 2s-3 equations. The remaining three conditions needed to solve

the strain boundary portion are usually one of the following groups:

(91)

(92)
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a) Specification of the two force resultants and moment of the

boundary forces (along the boundary portion being considered)

with regard to some point.

b) Specification of the three components of rigid body motion of

the boundary portion (2 displacements at a node plus the rotation

of an adjacent edge segment).

c) Specification of two displacement components of a point p not

necessarily on the boundary line plus specification of the

resultant moment of the boundary forces with regard to the same

point p.

This third specification group is used when the plate is attached to a rigid

material body that is pinned at some point, i.e., fixed to rotate about some

point not necessarily on the plate-rigid material interface (Fig. 9).

It is noted that the above equations for solving the boundary portion,

which will replace the force-displacement relations for all nodes i along

the strain boundary portion, are compatibility or strain-displacement

relations rather than the qquilibrium equations upon which Eqs (27) are

based. Introduction of strain boundary conditions into the system of Eqs (27)

will result in certain rows being replaced without replacing the corresponding

columns, and thus the "stiffness" matrix K will no longer be symmetrical.

The matrix modifications for the introduction of strain boundary conditions

are now developed.

Consider the strain portion of the boundary to have nodes numbered

_onsecutively from 1 to s in the + s direction, with segment (i) following

node i. The + s direction is the direction traversed along the boundary

keeping the outward normal on the right (Fig. 10). At each node i (i=l,s)

Eq (91) for segment (i) can be combined with Eq (92) for node i to give

the matrix equation

-Ji-iui-i + (Ji-1 + Hi)--iU"- --ill"ui+I = -ic" (93)

where

= .---i 0 I H

_n %n os _n I"_i ' --n

I

I sin4-1 11 -c°s_n_: "-CO-_@n I sin 4_,nl

L _n I _n]l

(94)
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and

E °

Eq (93) then replaces Eq (26)

"T×i (_i+ _- 1)

for node i in the total system (27).

Specifically the modifications are

K°

--i i-i

K..

_"iI

K.,

S.

_Ji-1

=> !i-i +Hi

=_-H.

=_ 0 2

i - all nodes on the

boundary portion
except the two
end nodes

j = 1,2 ..... n

j _ i-l,i,i+l

(95)

(96)

(97)

(98)

(99)

(lOO)

where 0 2 is a 2x2 zero matrix.

If the rigid body displacement of the boundary is specified, the

two displacement components (given for end node 1) are treated as in the

case of displacement boundary conditions. The specified rotation of edge

segment (1), _01, is combined with Eq (91) for segment (1) to give

- M1 -u2 : 1- - _i u-1

where, in general for side i,

_ cosklr sin_i I

: !Mi _. --s_ _ _.1
i I U

which is then used to replace super-row s of K and S and results in the

following modifications:

Ks2 =]_-M 1

Ksj :_ 0 2 (j =3,4,..

s. e_ ;-_- - _1 _1,-j

.,n)

(101)

(102)

(103)

(104)

(105)
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If no rigid body motion of the boundary portion is specified, two

force resultants and one moment resultant of the boundary forces must be

specified for the boundary portion. In matrix form, the force resultants

of the boundary portion forces are given by

S

i=l

where'= {_x-- Fy t

rigid boundary portion.

of super-row i of the stiffness matrix,

[ ol£i = Kil Ki2 ..... Kil Ki

then Eqs (106) become, upon use of Eqs (26),

(106)

is the matrix of forces applied externally to the

If _i is used to represent the (2x2n) supermatrix

(107)

i=l i=l

Eqs (108) are written at node 1 and result in the following changes in

super-row 1 of K and S:

Klj __ K.. (j=l,2 ..... n)_-'lj
i=1

S 1

S

__ + _ (si)
i=1

(108)

(109)

(110)

The moment resultant of the boundary portion forces about a specified

point p with coordinates Xp and yp is given by

s { } (111)

The moment resultant is combined with Eq (91) written for segment (1) and

the resulting pair of equations is used as the pair of equations for node s,

thus replacing super-row s of Eqs (27). The changes to super-row of K and S



- 36-

are as follows:

S

Ksl _ X Xi-Kii + _I
i=l

(ii2)

Ks2 :=__'XiKi2 - _i

i=l

(113)

S

K :_-'_ x. K..
_" sj -" i _'-iJ

i=l

(j=3,4 ..... n) (i14)

S

S =_

c 1
_-S (115)

where

xx]x. = 1-Yi I i 0. =

I 0 ' "i in_i ] "COS
_'1 0 I

(116)

Finally, if the rigid boundary portion is pinned at some point p not

necessarily on the boundary edge and has freedom to rotate about that point,

equations relating the displacements of node 1 and the rotation of segment (1)

to-the known displacements of pin-support point p, Up, must be used at node 1.

The above combination of moment resultant and Eq (91) is still used at

node s. At node l, the equations become

x Io0 ]RT I 2.- (U 1 - U 2) = R T Up (117)

where R is given by Eq (58) if e replaces $i" Angle e relates the line

joining point p and node 1 to the global reference frame. X is the length of
P

that line (see Fig. 11). The changes to K and S required to treat the

pinned rigid boundary are as follows:
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x [CoS, ,s,n01JK12 " I 0 (119)

Klj _ 0 2 (j=3,4 ..... n) (120)

S1 _ RT Up (121)

7) Dislocations in Multipl_, Connected Plates:

A multiply connected plate (one with more than one closed boundary

curve) may have internal, self-equilibrating stresses corresponding to the

closing of dislocations (Refs. 7 and 11). These initial stresses are continuous

across the closed dislocation but the displacements of each node k along the

U +dislocation are multivalued. Let --k be the matrix displacement of node k on

the positive side of the dislocation and U k be the matrix displacement on the

negative side (Fig. 12). The difference between them is related to the rigid-

body motion of the positive side of the dislocation in the closing of the

dislocation:

= U+ - I 6u°l
6Uk -k- Uk = 6vO I +

6,_° . (122)

where 5u °, 5v ° are the rigid-body translations and 5 °is the rigid-body

rotation about the global origin. Eq (26) written for a node k on the dislocation

includes an additional generalized nodal force representing the initial

stresses due to the closing of the dislocation in the form

= 1 {(K_ i _ K_i)Ui + (E K_k-5_Fk 2 '

n

where nodes i and j,

in Fig. 12, and

_p KP k) U k + (K_j- Kdj)Uj}

and elements m, s, e, and d are located as shown

(123)
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n = all elements incident upon node k on the negative side
of the dislocation (124)

p = all elements incident upon node k on the positive side
of the dislocation

(125)

For a node p not on the dislocation but connected to it by an

element, Eq (26) will involve the displacements of at leaBt one dislocation

node, say q. One of the terms KpqUq or "Pq'qKU + will appear in Eq (26)

depending on which side of the dislocation p is located. The "average"

displacement at q can be expressed as

1 = U+ I_ (126)Uq : + -q -

so that

m

KpqUq = KpqUq + IKp_c_U q (127)

K U + = K U -I_._K _U (128)
--pq-q -pq"q z pq'-q

Since the second term in each of Eqs (127) and (128) is completely known,

it can be moved to the right-hand side of Eq (26) and treated as an additional

generalized nodal load 6F .
--p

In summary, the modifications to the generalized nodal load

matrix S required to include the closing of dislocations are as follows:

a) for each node i lying on the dislocation:

S. _ S. + 6F. (6.._Fi given by Eq (123)) (129)--i "i _-" i

b) for each node p connected to the dislocation on the positive side:

1 6_UqS :_ Sp-_Z Kpq-p

q

(130)

c) for each node p connected to the dislocation on the negative side:

1 _ _pqSp _ Sp +'_ 6.Uq

q

where in both b) and c) the summation q extends over all nodes that are

on the dislocation and connected to p.

(131)
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3.2 Introduction of Boundary Conditions for the Dual Plate Bending Problem

1) Displacement Boundary" Conditions:

Displacement boundary conditions take the form of the z component

of nodal displacement (w) being known along a portion of the boundary along

with slope of the plate edge in the direction perpendicular to the edge (W,n).

In the finite element method, only the average value of w, n over an edge

segment need be known. The average value of w, s (the slope of the edge in

the direction parallel to the edge) is computed for each segment i from

(W's)i = [(w)i+l- (w)i ] /_i (i32)

where nodes i and i+l are at each end of segment i, The cartesian compo-

nents of average edge slope for segment i then become

w, x = w, n cos_b i - w, s sin_ i (133)

W,y = w, n sin @i - w, s cos@ i (134)

Now consider a node k on the boundary, between segments m and

n. The total generalized nodal rotations due to edge slope can be computed

directly from w, x and W,y (Ref. 7 ).

R' = sin_ n + (W,s) n cos _bn sin_mxk (W'n)n - (W'n)m

- (W,s) m cOS_m

(135)

R' = cos_b n + sin_b n + (w, cos_b myk (W'n)n (W's)n n)m

- (W,s) m sin_b m

(136)

The portions of these generalized nodal rotation components due to the

curvatures of the particular solution are computed from the particular

solution functions (Ref. 7 ). The remaining homogeneous portions are

then dual of the generalized nodal forces due to edge loads in the stretching

problem. If the matrix of particular solution generalized nodal rotations
I

at node k is --_-R_p, and that of total generalized nodal rotations due to edge

slope is R'_k = _:[R'xk Ryk} , then the modifications to -.S' for each node

k along the portion of the boundary on which displacement conditions are

specified are as follows:



-42-

sk sk + R' - R_ P--k
(137)

21 Stress Boundary Conditions:

Stress boundary conditions take the form of the edge stress couple

(Mnn) and z component of edge effective shear (Qne) being known on a

portion or portions of the boundary. From these values and the particular

solution, obtain

)I4 .u

M and Qnnn e

)re

M' = M - M p (138)
nn nn nn

;:" P (139)
Qne = Qne - Qne

respectively, in the stretching problem,

fB A}['= Tx -= ( 4o>
, W' x W, x

--'MA = w A - wB - (XA- XB)w'Bx - (YA- YB ) w# (141)

problem are

are dual of c and ×,
SS

and thus stress boundary conditions of the bending problem can be treated

exactly as strain boundary conditions of the stretching problem (Eqs (96)-

(100)}, For a simply-connected plate with stress boundary conditions on

only one continuous portion of the boundary, U 1, V 1, and _1' given by an

equation dual of (78), can be specified arbitrarily at node 1 (the first node)

of the portion. These quantities are dual of the rigid-body motion of the

strain boundary portion of the stretching problem, and can be introduced via

equations dual of Eqs (52)-(56) for node 1 and dual of Eqs (103)-(105) for

node s (the last node on the portion).

For the case of stress boundary conditions specified on more than

one portion of the boundary, a more careful, detailed study of the duality

properties (Sec. 9. c. of Ref. 7 ) is required. The results of such study

reveal that conditions dual of the force and moment resultant of the strain

portions are used when the stress condition portions alternate with dis-

placement conditions. For a typical stress boundary condition portion, the

quantities dual of the externally applied force and moment in the stretching
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where A and B are the segments immediately preeeeding and following the

stress portion, and xA, YA' XB' YB are the coordinates of the midpoints
of these segments. Since displacement boundary conditions are given on

these two segments, F' and M' are completely known.. The resulting

modifications to K' and S" are dual of Eqs (109), (110), (112), (113), (114),

and (115). U1, VI, and f21are still prescribed arbitrarily on one of the
stress boundary portions.

3) Mixed Boundary Conditions:

a) M and w specified: For each segment, an equation dual
nn - _,,

of Eq (91) can be written relating M' to the nodal values of the stress
, nn

functions. M is related to the specified value of M by Eq (138).
nn nn

From Ref. are obtained also the following relations:

(xs- xA)w,Bx + (YB-YA) = wB - wA (142)

B A = -R'
W'x- W'x yk

(143)

B A - wAx - (YB YA )w'Aw - w - (x B x A) - = (xk - xB) R'yk

-(Yk - YB ) R'xk

(144)

where A and B are midpoints of two adjacent boundary segments and k

is the node between them. Using Eqs (133), (134), and (142) to solve for
B

w, n, obtain

B A w,Bs E sin_B (x B XA) - cos_b B (YB YA )]B w - w + - -

W,n = cOS_B (XB- XA) + sin_bB (YB- YA )
(145)

This result is not valid for @A = _B = 0°' 900, 180°" 2700' These exceptions

will be treated later. Using Eqs (133), (134), and (145) in Eq (143),

obta in

cos CB
A

W,n -- , ,

cos _A cos CB (XB - XA) + sin¢B (YB - YA )
'(146)

J
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R !

B sin_B + w,A tanakA + ykW,

s cos __A s cos CA
(146 cont)

Finally, if nodes j and m are the nodes at the other ends of segments

A and B, respectively, and w, s is expressed in terms of nodal values

of w, then Eq (146) substituted into Eq (144) yields

R'xkCOS_A (Ym-Yk ) + R'yk [c°s_bA (x k- xj) + sin_ A (Ym- yj)_= _k(W) (147)

where _k(W) is a function of known nodal displacements and geometric

properties, given by

(0Wm-W j) (sin_b B cos _A - sin _A cos _bB)
_k(W) = (ym-Yj)

L (ym-Yj)sin_B + (Xm-Xj)COS_ B

-(Wm-Wk) LXm-Xj) (sin_A sin_B cos _B - cos _bA) - (ym-Yj

(148)

)cos2_B

£B [Ym-Yj ) sin_bB + (Xm-X j) cos ¢I3]

Wk-W" t+ hA ]

COS

Eq (147) is the second equation to be written for each node along the portion,

together with an equation dual of Eq (91). Eq (147) can be expressed in terms

of the unknown nodal values of the stress fun ctions. The resulting matrix

equation for each node along the mixed boundary conditions portion is

K' U! +Wk -ik -i

i=l

n

i=m+l

where
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wk os_bA(Ym-y k) i c0s_bA(Xk-X j)

I

o I
I

+ sin_bA (Ym-Yj)

0

(15o)

The exceptions mentioned above will now be treated.

for _bA = 4B = 0 or 180 °, obtain directly

A -  wA' LW,y S

JB = ±w B,
W,y S

+ for 0 °

- for 180 °

(151)

(152)

Thus, Eqs (145) and (146) can bebypassed and Eq (144) becomes directly

B A - wA' = -(Yk- YB ) R'w - w - (YB YA ) s xk (153)

The resulting simpler expressions for _k(W)and W k are

_k(W) = w m - wj - (Ym- Yj)(wk- w))

A

i-,olWk =, m Yk II

0 I 0

= 90 ° or 270 °, obtain directlyF°r_A = _B

(154)

(155)

A = +w,A
w ,

x S

l_ = .i.WB
W'x S

+for 270 °

- for 90 °

(156)

(157)

so that Eq (144) becomes

B A - x A) wAs = (x k- x B) R'w - w " (XB yk
(158)

The resulting simpler expressions for _k (w) and w k are
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 k(W) = wm
- wj - (xm- xj)(w k- wj)

A

w .Xm -k ---'[
I 0

(159)

(160)

Finally, the modifications to K' and S' necessary for introduction of mixed

boundary conditions of the first type are, for each node k on the boundary

portion:

K' =_* W K' (i = 1,2 j)-ik --k-ik " "
(161)

K' =_ WkK_ k +.-kk _k
(162)

K' _ W,K' - #.
- km _"K_'Km "k

(163)

K' WkKik (i-ik :_

S' ' _P)•-k ::_T_rk(Pk + --kO' -

= m+l, m+2, . .

_ ['k( Mnn - MPnn' J

• n) (164)

(165)

b) w, n and Qne specified: For ach node, an equation dual of Eq (92)

can be written relating Qne to the nodal values of the stress functions.

Q_ne is related to the specified value of Qne by Eq (139).

From Ref. are obtained the following relations:

k

k - w f = - _ R'. (166)
W'x 'x i =f + 1 yl

k

k f = _ R'.W,y- W,y = (167)i f +1 xl

where w! x or W!y is an average value over segment j following node j.

The nodes of the portion are numbered consecutively from 1 to s. In

addition, singlevaluedness conditions for w, x, W,y and w are obtained

from Eqs (166) and (167) and from Eq (189) of Ref. 7.



-47-

R w = 0
k yk

(168)

' = 0
xk

k
(169)

where the symbol_ means "sum on all nodes around the entire closed

boundary curve, " and p in any point on the boundary. And finally,

there is the relation

(170)

i i i

W,n = W,x cos_i + W,y sinai (171)

for all segments i along the mixed boundary condition portion.

Let q be the number of the first segment along the portion for

t 90° or 270 ° (segment numbers correspond to the numbers of thewhich _ q

nodes t hey follow. ) Let r be the first segment afte....._xr_egment q for which

,_/_ . This somewhat strange procedure is necessary because Eqs.
4r q

(166) and (167) must be written between two segments that are not parallel

to the x-axis. Only in this way will Eqs (166) and (167) eventually yield

q and wq v. Writing Eqs (166)values of the two additional unknowns w. x

and (167) between segments q and r, obtain

r

w, x - w = - (172)
i =q+l yl

r

r - w q = ]b R' (173)
W,y 'y _ xi

i =q +i

Applying Eq (171) to segments q and r, and using Eqs (172) and

the quantities w_.. and w q. are obtained as
2k

(173),
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q wq n

w, x =_- Tan4, q wqy
(174)

r r

wr cos_- W?nCOS4, +cos4, (cos4, X yl _ xl'n q r q r R'." sin4,r R'.)

i=q + 1 i=q + 1

sin (4,r - 4,q)

Finally, the following equations relating the stress functions to known

quantities may be written for each node along the boundary portion:

i) for node j such that 1 <j <q:
q q

wJ,-n1 = cos4,j_ l(wqx+ _ Ryi)+sin4,j_ l(wqy-_ R'.)xl

i=j i =j

(175)

(176)

ii) for done j such that q <j _<s, except node r:

J J

W,Jn = COS4,j (wqx- _, Ryi)+sin4,j(wqy + Z Rxi)

i=q + 1 i=q + 1

(177)

iii) for node r, Eq (168) expressed in terms of the stress functions,

the particular solution, and thermal nodal rotations, if any.

To specifiy the matrix modifications necessary for the introduction of the

above equations and the dual of Eq (92), the following matrices are

defined:

0

_-- sin (4,r- 4' q)

F sin 4, q sin 4, r I - sin 4, cos 4, J_ ml _ q r

SK r -- J-co si I cos 4, cos 4,rI q

(178)

(179)



-49-

-Qi

and the scalar quantity_j

, + P! - R!P
= _i -'i -i

is defined:

W.

j = WJ,n - cos Cj,
tan Sq (w,r n cos ¢q- wq n cos _br) l

-- J i

sin (Cr- _bq)

(w, 7 cos 4_q - wqn cos Cr )

Then the modificatlons to K' and S' are as follows

for row j such that l<j_q:

K'
--jk =]_Bk (k= 1,2 ..... n _j- 1,j,j+l)

K !

. ._ B j_l Jj-1j,j 1 :::_:_

K!. =_,Bj + + J"-jj -Jj- 1 -3

K! "+i =_J,J Bj+I -Jj

_sj +- 1 /Q;e /
i=j i=q+1 [-_- (zj+_j_1)J

where

= K' - K'-Bk - 1 -ik - i
i=j --.=

ii) for row j such that q<j< s, except row r:

K' =:_ A k (k=l,2,. nlj- 1,j,j+l)--jk " "'

K! . _ "JA'-I - J'---j,j-1 _J
1

K!. _" A. +. J.. + J.
"J3 "J "J- ± "J

Kj,j+ 1 =_ Aj+ 1 - Jj

{ r t

(180)

(181)

(182)

(183)

(184)

(185)

(186)

(187)

(188)

(189)

(190)

(191)

(192)
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where

iii) for row r:

! _ K !

Kik ... --ik
"- 1 "= 1

(193)

K' :=_ K'
--rk --ik

i

(k=l, 2 ..... n#r- 1,r,r+l) (194)

K !

-r,r-i

K !

_rr

0 i --1,r-1

- J (195)
,.,.,r-1

 E°o + -'-(196)

K !

-r,r+l

S !

--r

--r,r+l - Jr (197)

*I°0 +l o
where, in all the above modifications, J is given by Eq (94).

-p

If no segment along the portion can be found such that _ =90 ° or 270 °

for that segment, then all segments are parallel to the x-axis and w, n = +W,y

for each segment. The matrices for the above modification procedure

become

and the scalar W. becomes
J

- for 90 °

+ for 270 ° (199)

"_j = w j - w,i n'n
(200)

and q=r=l in the steps of the procedure.



-51-

If a segment q is found but no segment r after q can be found

such tb._t _q_ _br, the above simplified matrices and procedure• Eqs (199)

and (200), may be used for all nodes j before node q. Since all segments
after node q are parallel, i.e., the boundary portion from node q to the end

of the mixed boundary condition portion is a straight line• the following

simpler equation is used at all nodes j (q<j<s)

k k

i=q+l i=q+l

resulting in

"_j = w!n - wqn (202)

(203)

The singlevaluedness condition is used at node q, i.e., q=r.

4) Elastic Boundary Conditions:

Elastic boundary conditions for the plate bending problem are

dual of an edge beam in the plate stretching problem (Ref. 7). The duality

correspondence is given in Table It.

Stretching

EA, EI

O
C

O
x

Table II
i I

Bending

-f -f
SS ZZ

M°= MS_M p
nn

QO= QS_Q_e

(elastic flexibility coefficients

where QS

given by

and M s are the edge shear and couple due to support movement,

s w,s
QS _ w , MS =

fzz fss
(204)
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Thus, the matrix modifications necessary for the treatment of an

elastic boundary in the bending problem are dual of Eqs (89) and (90),

using Table 2.

5) Plate Bounded by an Edge Beam:

An edge beam boundary for the plate bending problem is the dual

of elastic boundary conditions for the stretching problem (Ref. 7 ). To

develop the dual matrix modifications, it is necessary to define the following

coefficients (dual of the elastic stiffness constants of the stretching problem

elastic boundary):

f = (dY Ids)2 + (dx/ds)2 (205)
xx El GJ

fxy = fyx d-'s _ - (206)

f = (dx/ds} 2 + (d,Y/ds)2 (207)
yy EI GJ

and the support stress functions (dual of the support movement)

b + b +C'U s = (U o+C ° ) - (y- yo )(_o Pzo ) x (208)

vS = (Vo +Cbyo ) - (x-Xo)(f2o + pzo)b + C'y (209)

where the subscript o refers to an arbitrary initial point on the edge beam

boundary, and C' and C' are the moments at a cross-section of the beam
x y

_n - -" - Mp ) acting on the beamdue to the forces ( e QPne) and moments (Mnn nn

oriented positively from point o to the cross-section. ___neand _nnportion

are the edge shear and stress couple applied externally to the beam. Since

these stresses are known, along with the particular solution, the

quantities U s and V s are completely determined except for the three

quantities

+ b + C b ) , (V ° + Cby(_2o Pzo ) ' (Uo xo o) (210)



-53-

(See Ref. 7 for a definition and discussion of these quantities. )

For a simply connected plate, U o, Vo, and _2° are arbitrary and thus

may be chosen so that the three quantities (210) vanish, leaving

U s = C' (211)
x

V s = C' (212)
Y

For a multiply connected plate, the three quantities (210) stillvanish on

on_._eof the boundary curves. For the other curves, the three singlevalued-

ness conditions, Eqs (168), (169), and (170), are used to determine the

three quantities (2101 by expressing R' and R' in terms of the flexibility
xk yk

constants, stress functions U and V, and support functions through equations

dual of (66) and (67).

In matrix form, Eqs (208} and (209) become

s = U s + LkTZ + C'-Uk -o o --k (213)

where

U S

" k Vk Lk o- Yk f

= xo C' _ C'
-k x: y k+ cb-- = C (215)

Vo yo

+ pb (216)
ZO = _0 ZO

In applying the singlevaluedness conditions to equations dual of (66) and (67),

it is convenient to define the following matrices and scalars:

_4k = (fk-l,k+fkk +fk+l,k ) (217)

where f.. is a flexibility matrix dual of _ and is determined from the
"_J . ij

flexibility constants through equations dual of (69), (70), (71), and (72);

1 _ _4 T
-_2n Lk _'k L k (a scalarl (218)

k
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Bk = Lk k

H k
k

(218)

(220)

Using these matrices and scalars, the solutions for the three quantities

(210) are obtained as

Z = A LkF_P + Bk (1_ k +C, _) - HU s (222)
O K

k k

The modifications to K' necessary for the inclusion of edge beam

effects are dual of Eqs (73), (74), and (75). For simply connected plates,

the modifications to S' are dual of Eq (76). However, for multiply connected

plates, U_ includes terms involving the unknown stress functions U, as is

shown by Eqs (221) and (222). These terms must be moved to the left hand

side of Eqs (46) and thus lead to additional modifications to K':

a) for each node i along the edge beam modify row i of K' as follows

to K' add T h (223)--ih

to K!. addT.
_'ii "-i

(224)

to K!. addT.
-ij -j

(225)

where h and j are the nodes preceeding and following node i

along the boundary, and

T k = (ALkTH- 12) D -I E (AHH TB k- _k ) - ALk T E Bk

k k

(226)
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k

(227)

b) for each node i, S! becomes, for multiply connected plates,
--1

where

S! _ S_ + fih$h + fii$ i + fij$ j
(228)

Guk

Gzk

(229)

(230)

(231)
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CHAPTER 4

Computer Implementation of the System

4.1 Introduction

The dual finite element for stretching and bending of orthotropic

plates must utilize the capabilities of a digital computer to be an advan-

tageous method of solution. To maximize its utility, a dual finite element

computer system should be easy to use by an engineer who is not a computer

expert. Thus the input to the system should be in the form of a problem-

oriented language related to the engineering terminology of the problem.

Also, the system should be structured in steps, or modules, that relate

to the actual engineering steps used in problem solution. The programs

for a particular step should be grouped together so that only the group

for the current solution step would necessarily be in the computer at

any given time. Finally, the data storage should be flexible so that

storage areas would be only as large as required for the current problem

step, and only data currently being used would necessarily be in the

computer at any given time.

The capabilities for creating a system with the above desirable

features are available as part of the Integrated Civil Engineering System

(ICES) (Ref. 8 and 9) developed by the MIT Department of Civil Engineering.

Specifically, a general Finite Element Analyzer exists (Ref. 1) with the

capability of easy modification and sophistication. Thus the dual finite

element system of this thesis was programmed as additional capabilities

to the Finite Element Analyzer.

The programming of the problem-oriented language input commands

was done in Command Definition Language (CDL) (Ref. 9), itself a problem-

oriented language. The programming of the problem solving routines was

done in ICETRAN (Ref. 9), which is FORTRAN IV (Ref. 10) with the added

capability of dynamic memory allocation. The packaging of programs

into separate groups, called load modules, and linking these groups together

to form a solution procedure is accomplished by a facility called the

linkage editor (Ref. 8 and 9).
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In the next section, the problem-oriented commands used to

solve bending and stretching problems are described in detail. This

information is all that is needed by an engineer wishing to us_.._ethe

system to solve specific problems. For those engineers wishing to

modify or add to the system, detailed system documentation is given

in Appendices 1, 2, 3, and 7. This documentation consists of data

structure description, COMMON storage area map, program descrip-

tions and flow charts, and program listings. It is intended to parallel

the system documentation of the Finite Element Analyzer, which must

also be studied by anyone wishing to modify the system of this thesis.
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4.2 Description of the Problem-Oriented Language Commands

The computer capabilities developed in this thesis form a subset

of the general capabilities of the Finite Element Analyzer, which in turn

is a par_ of the Structural Design Language (STRUDL). Some familiarity

with STRUDL, as described in Reference 12, and a good understanding of the

Finite Element Analyzer Language (Chapter 4 of Reference 1) are

prerequisites to the use of the capabilities described herein.

Below is a complete outline of the commands that may be used to

solve problems of stretching and bending of orthotropic plates by the finite

element method. Commands marked with an asterisk (_:_) are part of the

general Finite Element Analyzer and are described in detail on pages 35-46

of Reference 1. Those descriptions will not be repeated here. All new

commands developed specifically for the dual orthotropic plate problem

are described in detail below.

In the command descriptions, underlined words must appear as

shown. Data items can be real (with mandatory decimal point}, integer

(without decimal point}, or alphanumeric (written between single quotation

marks}. The acceptable modes for each node, element, or boundary name

are integer or alphanumeric, and for all other data are real unless

stated otherwise.

. Problem Initiation

* PROBLEM 'identification' 'title'

2. Unit Declaration

;',-"UNIT length weight angle temperature time

3. Type Specification

* TYPE type

The applicable types for this system of problems are:

DUAL PLATE STRETCHING symmetry

DUA_..._._LPLATE BENDING symmetry

_DUAL PLATE GENEI%A.L symmetry

The symmetry indicator must be either SYMMETRIC or NONSYMMETRIC

depending upon whether the global behavior ( stiffness / flexibility} matrix

is symmetric or non-symmetric in its final form immediately before

solution. This symmetry is dependent upon the type of boundary conditions

specified by the user, and is given in the table below.
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Stretching problem:

Bending problem:

SYMMETRIC

displacement

stress

mixed

elastic

edge beam

dislocations

NONSYMMETRIC

rigid boundary

i displacement stress

elastic mixed

edge beam

If al__jlof the boundary conditions to be specified by the user appear

in the SYMMETRIC column, then the used must specify SYMMETRIC in

the TYPE command. If an__yyof the boundary conditions to be specified

appear in the NONSYMMETRIC column, then the user mus__...!tspecify

NONSYMMETRIC.

DUAL PLATE GENERAL must be specified if the plate is to be

solved for both stretching and bending.

o Geometry and Topology

* NODE name COORDINATES X v Y v
x-- y

Condition

or

* NODE COORDINATES

name X v Y v Condition
x y

name X v Y v Condition
x y

In:this system of problems, al._!lnodes located on boundaries are

indicated by writing BOUNDARY or B_as the condition. The condition

specification for interior nodes is left blank. These requirements for

the condition specification differ from the Finite Element Analyzer, in

which only nodes with at least one restrained displacement component are

indicated by BOUNDARY or B and all other nodes are FREE, F, or

blank.
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* ELEMENT INCIDENCES

element name node I node 2 node 3

element name node I node 2 node 3

BOUNDARY INCIDENCES

boundary name

boundary name

node name

node name

This command is used to assign boundary names to the boundaries

of the plate. The name may be an integer or up to eight-character alpha-

numeric name (enclosed in quotes}. Node name may be the name of any

node located on the boundary being named. A boundary is defined here

as an entire closed path bounding the plate. Thus the number of boundary

incidences specified by the user is the connectivity of the plate. This

command should not be used until after all node conditions and element

incidences have been specified. It must be used before any boundary

conditions are specified. The specification of the BOUNDARY INCIDENCES

causes the chain of boundary nodes for each boundary to be assembled.

Implicit in this assembly is the assumption that no element touches

more than one closed boundary curve, so the user must subdivide his plate

in such a way that this assumption holds true.

5. Element Property Specificatio n

* ELEMENT list PROPERTIES TYPE 'type' THICKNESS --

__ -- __ PYv CTXv G v G DENS v Dv t EXv E PXVpx EY VEy__ py -- cy-- --

or

* ELEMENT PROPERTIES

list TYPE 'type' THICKNESS.v t ....

list TYPE 'type' THICKNESS v t ....

where EX =Young's modulus in the global x-direction
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EY

PX

PY

CTX

CTY

= Young's modulus in the global y-direction

=Poisson's coefficient in the x-direction

=Poisson's coefficient in the y-direction

=thermal expansion coefficient in the x-direction

=thermal expansion coefficient in the y-direction

G = shear modulus

DENS = material density of the element

THICKNESS = average thickness of the element

TYPE =the type of element being used, which for this

class of problems if 'FTOD', standing for f..lat

triangular o_.rthotropicdual.

If only one direction of an orthotropic property is given (i.e., EX),

then the other value is assumed to be the same (i.e., EY =EX) except in

the case of PY, which is assumed to be (EX)(PX)/(EY).

The list can be either a single node identifier, a list of them, or

a specification of the form N I TO N 2 ifthe group of nodes is named by

successive integer numbers with N I being the lowest integer and N 2 the

highest.

6. Boundary Conditions Specification

The explicit and detailed consideration given to boundary conditions

in this thesis has made necessary the development of a distinct boundary

condition command with a set of options for explicit specification of the

various types of boundary conditions. The general form of this command

is as follows:

* BOUNDARY CONDITION 'boundary name' type (indicator)

(additional data items)

boundary portion values

boundary portion values

'boundary name' is the name of the boundary to which the particular condition

applies. The presence of an indicator and additional data items on the second

line, under the tabular heading, depends upon the type of boundary condition

being specified.
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The beginning of each line under the tabular heading specifies the

portion of the given boundary over which the condition applies. This

portion may be a single node or a range of nodes

node 1TOnode 2

The range of nodes implies all segments and nodes along the boundary

between node 1 and node 2, traversing the boundary in the +s direction

(outward normal vector pointing to the right} from node 1 to node 2. In

the right hand x-y-z coordinate system used here, this direction is

counter- clockwise for an exterior boundary and clockwise for an interior

boundary.

Example:

t_

1 TO 2 would imply nodes 7, 6, 5, 4, and 3, and segments

G, F, E, D, and B, whereas

2 TO 1 would imply no additional nodes and only segment A.

1 TO 1 would imply the entire boundary.

The various types of boundary conditions, associated indicators,

and data values will now be described.

a) type : DISPLACEMENT Indicator

values: UuV_vWwRw, n

In the case of a DUAL PLATE GENERAL problem (specifice previously

by the TYPE command) involving both stretching and bending, the Indicator

is used to tell the system to which problem(s) this particular boundary

condition applies, as follows:

STRETCHING (or S)

BENDING (or B)

GENERAL (or G)

-- only the stretching problem

-- only the bending problem

-- both problems

The Indicator is not necessary if the problem type is not DUAL PLATE

GENERAL. Value symbols u and v are the x and y components of displace-

ment for all nodes along the specified boundary portion. Symbols w and w, n
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are the z component of nodal displacement and the negative edge rotation
for all nodes and edge segments along the specified portion. All values for

a particular portion need not be specified at the same time. Values not

specified will be taken as zero unless specified previously or subsequently
by another use of the same command.

b) type : STRESS Indicator

values : NX Nnx N Y Nny Q Qne MN Mnn

The Indicator has the same function as in the DISPLACEMENT type discussed

above. Value symbols Nnx and Nny are the x and y components of the edge

stress resultant (force/unit length) along the boundary portion. The edge

stress resultant components are assumed to vary linearly between nodes

and thus the specified values apply to all nodes along the boundary portion,

including the end nodes. Symbol Qne is the z component of edge stress

resultant (also known as the effective shear) along the boundary portion.

Symbol Mnn is the edge stress couple (bending moment/unit length) whose

vector is oriented in the + s direction. A positive Mnn corresponds to

a negative w, n" The stress couple Mnn is assumed to be constant between

two nodes and thus the specified value of Mnn applies to all segments along

the boundary portion. Again, all values need not be specified at the same

time.

c) type • MIXED STRETCHING

values : URu NR N ANGLE 0
r -- nr r

d) type •

values :

MIXED BEND/1

WwMM
-- -- nn

e) type • MIXED BEND/2

values : QQne Rw, n

Value symbol u r is the nodal displacement in the direction r (in the plane

of the plate), symbol N is the edge stress resultant in the direction
O nr

perpendicular to r (90 ahead of r) and Or is the positive angle from the x-

axis to the r-axis. Symbols w, Mnn, Qne' and w, n are the same as explained
above.
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f) type : RIGID FIXED

type : RIGID PINNED

type : RIGID FREE

values : CHI x EPSILON
zs ' SS

These types of the BOUNDARY CONDITION command are used to specify

fixed strain (ess) and in-plane curvature (Xzs) along a portion of the boundary.

This is equivalent to making a portion of the boundary rigid with respect to

the material of the plate, with a given shape specified by the strain and

curvature values; hence the type RIGID. The three alternate forms of the

RIGID type state whether the rigid boundary's motion is fixed, pinned, or

free with respect to the global coordinates and give the necessary accompanying

information on the line immediately below the tabular heading BOUNDARY

CONDITION, as follows:

fixed : U__Iu 1 V__I v 1 R__I

Symbols u 1 and v 1 are the x and y components of imposed displacement of

the first node (node 1) of the rigid boundary. Symbol m is the rotation of

the edge segment connecting node 1 to the next node in the + s direction.

pinned : X__P Xp Y.__Pyp U__P Up V__P Vp M.__PMp

Symbols Xp and yp are the x and y coordinates (global) of the pinned point

p (not necessarily any of the nodes) about which the rigid boundary is free

to pivot. Symbols u and v are the imposed displacements of the pinned
P P

point. Symbol M is the moment applied externally to the rigid boundary
P

about point p. Mp, as a vector, is parallel to the +z axis of the right-handed

x-y-z coordinate system.

free : X_.P Xp YP yp F.._XXF x F__Y Fy M__.PMp

Symbols F and F are the x and y components of force applied externally
x y

to the rigid boundary. The other symbols are the same as for the pinned

case.

The RIGID type of boundary condition applies only to the plate

stretching problem and any values not specified will be taken as zero.

Example s:

BOUNDARY CONDITION 'OUTER' RIGID PINNED
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XP 31. YP 2.7 UP .02 VP .12 MP 220.

'CORNER1 ' TO 'CORNER2'

This example specifies a pinned rigid boundary with no strain on

in-plane curvature, i.e., it has the shape of the plate boundary before
deformation.

BOUNDARY CONDITION 'INNER' RIGID FREE

XP 0. YP 0. FX0. FY0. MP 0.

21 TO 21

This example could be used to specify a rigid, unloaded "plug"

inserted into the entire hole bounded by 'INNER'

g) type :

values :

ELASTIC

US u s VS v s KXX k KXY k KYX k KYY k
-- -- -- xx-- xy-- yx-- yy

WSw s RS w s KZZ k KSS k
-- -- 'n -- zz -- ss

This type specifies that the entire boundary 'boundary name' is

elastically supported. Symbols kxx, kxy, ky x, %, kzz = 1/fzz, and

k = 1/f are the elastic constants over the specified boundary portions.
SS SS

Symbols us vs w s andw s• ' ' 'n are the support movements (3 components of

displacement and an edge rotation) along the specified boundary portions.

Only those values pertaining to the problem to be solved need be specified.

If the sum of all specified boundary portions does not add up to the entire

boundary, portions not specified will assume zero values of all relevant

data.

h) type : EDGE BEAM

values : N__XNnxN_YNnyE__BEIZI z MMnnQQneINI nJJGG

This type specifies that the entire boundary 'boundary name' is an edge

beam. Symbols E and G are the Young's modulus and shear modulus of the

beam material. Symbols Izand I n are the moments of inertia of the edge

beam about the z and n axes, respectively• and J is the torsional constant,

as shown below:

Sn_EDG| _|IM_



-66-

Symbols Nnx and Nny are the x and y components of the stress resultant

(force/unit length} applied externally to the beam, Qne is the effective

shear applied externally, and Mnn is the externally-applied edge moment

intensity. Again, only pertinent values need be specified and all values

along portions not specified wilt assume zero values.

In addition to the above boundary condition command, there are

a number of so-called standard boundaries that may be more easily specified

with the following commands:

SIMPLE SUPPORT 'boundary name' node 1 TO node 2

This support is the plate equivalent of a pin-ended linear member,

i.e., it fixes displacement but not rotation. Thus the command implies

u =v =w = Mnn 0. over the boundary portion node 1 to node 2.

IN:PLANE ROLLER 'boundary name' node I TO node 2

This support allows complete freedom of motion in the plane of the

plate but restricts displacement perpendicular to the plate. Thus the

command implies N = N =w = M = 0. over the boundary portion
nx ny nn

node I to node 2.

NORMAL ROLLER 'boundary name' node 1 TO node 2

This support allows complete freedom of motion perpendicular

to the plate but restricts displacement in the plane of the plate. Thus the

command, implies u =v = Qne =Mnn =0. over the boundary portion node 1

to node 2.

CLAMPED EDGE 'boundary name' node I TO node 2

This support restricts all displacement and rotation of the plate

edge. Thus the command implies u = v = w = w, n = 0. over the boundary

portion node 1 to node 2.

FREE EDGE 'boundary name' node I to node 2

This command specifies a totally unrestrained edge, not acted upon

by any external forces or moments, thus implying Nnx Nny Qne = Mnn

over the boundary portion node 1 to node 2.
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7. Dislocations

In multiply-connected plates, dislocations in the plane of the plate

may be specified by the following eornmand:

DISLOCATION DU 5u ° DV 6v ° ROTATION 5_ °

PATH node 1 node 2 .... node n

Symbols 6u °, 5v °, and 6w ° are the components of rigid body motion

used to bring the positive face of the dislocation (see section 3.1-7) into

coincidence with the negative face, referred to the globai coordinate reference

frame. The path of the dislocation extends from node 1, located on an

exterior boundary, to node n, Iocated on an interior boundary. Each node

along the dislocation must be connected to the previous one by an element,

i.e., the disiocation line must aiways coincide with element edges.

8. Loading Specification

* LOADING 'identification' 'title'

9. Nodal loads

* NODE list LOADS FORCE X F Y F
--_ x m y

or

-,-NODE LOADS

list FORCE X F Y F
X-- y

The nodal load components F and F are the only ones applicable
x Y

to this class of problems since loads perpendicular to the plate, causing

plate bending, are specified indirectly through the Particular Solution

commands described below.

10. Line Loads

The line load tabular command specifies a line load in the plane

of the plate along a path coinciding with element edges and with force

intensity components varying linearly between nodes along the line. Thus

the force intensity can be completely specified by its values at the nodes

along the line. The form of this command is as follows:
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LINE LOAD

node 1 FORCE X fx Y f-- y

node 2 FORCE X fx Y f-- y

node FORCE Xf Yf
n x-- y

The nodes must be specified in order along the line. Data labels

may be omitted if the data is given in the order shown above.

11. Gravity (or Dead) Load

The load due to the weight of the plate material (dead load) can

be specified simply by specifying the orientation of the gravity vector with

respect to the global axes. This specification is meaningless for a pure

bending problem, however, because the component of gravity perpendicular

to the plate must be specified indirectly through one of the Particular

Solution commands described below. The form of the dead load specification

is as follows:

GRAVITY LOAD ANGLE-X 0 ANGLE-Z 0
X Z

zI\..

gz I c,_;_vITY

V|CTOR.

X

Symbols 0 x and 0 z give the orientation

of the gravity vector with respect to

the x and z global axes, as shown at

the left. The dead load on each

element is then determined from the

previously specified element thickness

and density.

12. Element Loads

":' ELEMENT list LOADS component type values

",_ELEMENT list TEMPERATURE LOADS component value
, p

or

':' ELEMENT LOADS
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* ELEMENT TEMPERATURE LOADS

list component value

The type can be either LINEAR or UNIFORM and the applicable

components are FORCE X and FORCE Y for the element loads.

13. Particular Solution for the Bending Problem

In the dual finite element stress function method for plate bending,

loads perpendicular to the plate (which contribute to the bending of the

plate) are specified indirectly through the two functions K and K (see
x y

page 20 or reference 7). Except in the case of a uniform load over a

homogeneous plate, the nodal and optionally also the element-centered

values of K and K must be explicitly specified by the user. These values
x y

are used to obtain an approximate integration of K and K over the area
x y

of each element. If the element-centered value is prescribed, a pyramidal

approximation is used for the integration. Otherwise, a linear approximation

is used.

PYR&MIO&_. klNg&g.

Since the particular solution is the equivalent of a load for the

bending problem, it applies to the most recent LOADING specification

given. Thus a number of different particular solutions may be specified

for the bending problem, just as a number of different loading conditions

may be specified for the stretching problem. The form of the particular

solution specification is as follows:

BENDING PARTICULAR SOLUTION

NODES list KXK KY K
-- x_ y

ELEMENTS list KX K KY K
x-- y
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EN_._ D

The list may be a single entry or a string of up to ten entries,

separated by commas or blanks. The word END must appear on the

line following the last tabular entry.

In the case of a uniform load over a homogenous plate, a standard

particular solution may be specified by use of the following command:

PARTICULAR SOLUTION UNIFORM LOAD Pz C c

in bending.

Symbol Pz is the value of the uniform load in the -z direction.

Symbol c is the proportion of the load taken by a family of strips in

the x-direction (see page 20 or reference 7 for a more detailed expla-

nation}. In the determination of the standard particular solution, the system

"fits" the plate shape into a rectangle whose edges are parallel to the

global x and y axes and are simply supported. Thus the proportionality

constant (0. <c < 1.} should reflect somewhat the plate's proportions in

the x and y directions as well as the known qualitative behavior of the plate

14.

o

Loading List Specification

* LOADING LIST 'loading 1

* LOADING LIST ALL

* LOADING LIST ALL BUT

' ,loading 2 , ....

,loading l, ,loading 2'

15. Analysis Command

* FINITE ANALYSIS

16. Output Command

* LIST STRESSES, STRAINS, PRINCIPAL STRESSES,

PRINCIPAL STRAINS, NODAL DISPLACEMENTS, ALL
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CHAPTER 5

Conclusions and Recommendations

The dual finite element stress function method discussed in this

work has been shown by Elias ( (Ref. 7) to be equal to, or better than,

the displacement method for approximating the exact answers to some

plate bending problems. The dual stress function method involves only

two equations per node whereas the bending displacement method involves
three equations. This fact alone makes the stress function method desireable

from a computer time consumption viewpoint. When fully operational, the

computer system developed in this thesis should serve as a good tool for
continuing the study of the stress function method and its comparison to
the displacement methods.

There are, .however, certain characteristics of some of the

bending problem boundary conditions that may detract from the effective-

ness of the dual stress function method. In the stretching problem, all
but one of the boundary conditions discussed result in only additions to

the existing non-zero elements of the global structural stiffness matrix,

thus maintaining the symmetry. Only strain boundary conditions result in

certain rows being replaced without changing the corresponding columns,

thus destroying the symmetry of the global stiffness matrix and requiring

the entire matrix to be stored in the computer instead of just the lower half.

This change in storage in turn requires a different solver routine to be

used. In the bending problem, stress boundary conditions are dual of

strain boundary conditions in the stretching problem and thus result in a

non-symmetric global flexibility matrix. Since both types of mixed

boundary conditions for the bending problem also involve part of the

stress boundary conditions formulation, they, too, result in non-symmetric

global matrices. In addition, the support stress functions U s and V s of

the edge beam boundary conditions for the bending problem are not known

quantities specified by the user, as are their dual quantities u s and v s

of elastic boundary conditions of the stretching problem. Instead, they

must be determined by a somewhat complicated procedure (pages 52-55)

that also results in a non-symmetric global matrix. The possible adverse

effects of the non-symmetric storage and solver requirements of some of
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the bending problem boundary conditions should be investigated.

The flexibility and ;modularity of the system developed in this work

will allow itto be modified and extended as the need requires. Routines

for specifying standard plate shapes, sizes, and finite element discreti-

zations could be added easily, as well as more types and options of boundary

conditions, more types of standard particular bending solutions, and

more sophisticated complete output routines. At the time of this writing,

the computer system developed in this thesis is not completely debugged and

operational.
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APPENDIX 1

Additions to the Finite Element Analyzer Data Structure

Appendices i, 2, 3, and 7 are intended to serve as a detailed

description of the internal characteristics of the programming

capabilities developed in this thesis. Since these capabilities are

a subset of the general Finite Element Analyzer programming system,

i
the detailed documentation of the Finite Element Analyzer (Reference

pages 53-105) should be understood before proceeding to the documenta-

tion contained herein. For ease of cross-reference, the numbering of

appendicies in this thesis corresponds to that of Reference
i "

A. 'BDID' - One level double word array to store the alphanumeric

identification of a boundary (8-character boundary

name). The integer IBC_N is the length of this array.

The internal number of a boundary is its position in

the 'BDID' array.

Dynamic array BDID

Length = IBC_N

DEFINE BDID, 5, BOUBLE, STEP = I

Defined in Subroutine BDINIT

B. 'BDCOND' - Three level full word array of boundary conditions

referenced by boundaries, nodes in order around the

boundary, and data.

BDCOND(I,J,I) = internal node number (input phase)

BDCOND(I,J,2) = type of boundary condition for the

stretching problem

= I displacement

= 2 stress

= 3 elastic boundary

= 4 edge beam

= 5 mixed

= 6 rigid-fixed

= 7 rigid-pinned

= 8 rigid-free
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Storage
location

(l,J,4)
i

(l,J,6)

(l,J,7)

(l,J,9)

(l,J,10)

(l,J,12)

(l,J,i3)

(I, J, 14)

(l,J,15)

BDCOND (I, J, 3)

BDCOND(I,J,4)

BDCOND(I,J,5)

Boundary Condition Type
i 2 3 4 5

U°

3

V°

3

W°

J

N
nx

N
ny

Qne

M
n nn

W_

S
u

S
v

k
XX

k
xy

k
yx

k
YY

s
w

S

W, n

K
zg

K
ss

= type of boundary condition

for the bending problem

= i displacement

= 2 stress

= 3 elastic

= 4 edge beam

= 5 mixed/l

= 6 mixed/2

= specified values of the boundary

conditions, located as shown in

the table below.

6

u I

v I

E N
nr

I u
z r

N e
x r

N
Y

Qne w.J

M M
nn nn

I
n

J

O

_zs

gss

I

Qne

w, n

7

U

P

v

P

X

P

Yp

M
P

_ss

I

F
xp

F
YP

X

P

Yp

M
P

_zs

_SS

If the problem is only bending (IPROB = -i) locations (l,J, ll) through

(l, J,15) are shifted up to (l,J,4) through (l,J,8).
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C. 'DISL_C'

D. 'PBS_LN'

Dynamic Array BDC@ND

DEFINE BDCOND, 5, P@INTER, STEP = I

DEFINE BDCOND(1), I0, POINTER, STEP = i0

DEFINE BDCOND(I,J), 5, FULL, STEP =5

Defined in Subroutines BDINIT and NBDASS

Two level full word array of dislocations,

appearing in the order specified, i.e., DISL@C(3,N)

refers to the third dislocation specified by

the user. The data is stored as follows:

DISL_C(I,I) = fu °

(I,2) = °

(I,3) = _,_o

(1,4) = position in JTID of first node on

the dislocation

(l,j+3) = jth node on the dislocation

(l,n+3) = nth (last) node on the dislocation

Dynamic array DISL_C

DEFINE DISL@C, 5,POINTER, STEP= I

DEFINE DISL@C(1), i0, FULL, STEP = i0

Defined in Subroutine DISLCP

Three level full word array of nodal values of

the particular bending solution functions K
x

and K . Referenced by loadings, nodes, and data.
Y

FBS_LN(I,L,I) = K
x

PBS_LN (I ,L, 2) =Ky

Dynamic array PBS_LN

Length = LEXTN

Length = 2

DEFINE PBSOLN, LEXTN, POINTER, STEP = 5

DEFINE PBSOLN(LEXTN), JEXTN, POINTER

DEFINE PBSOLN(LEXTN,I), 2, FULL

Defined in Subroutine PARTIC or STDPSL
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E,

F,

O.

'PBS_LE '

'IPRTIC"

'SFTEMP '

- Three level full word array of element-centered

values of K and K (if IPRTIC(LEXTN)=0) or
x y

of exact integrals of K and K over the
x y

surface area of the element (if IPRTIC(LEXTN)=I).

Referenced by loadings, elements, and data.

PBS_LE(L,I,I) =K x or_KxdA i

PBS_LE(L,I,2) =Ky or_KydA i

Dynamic array PBS_LE

Length = LEXTN

Length = JEXTN

Length = 2

DEFINE PBSOLE, LEXTN, POINTER, STEP =5

DEFINE PBSOLE(LEXTN), JEXTN, POINTER

DEFINE PBSOLE(LEXTN,I), 2, FULL

Defined in Subroutine PARTIC or STDPSL

- One level half word array indicator of the type

of particular bending solution specified by the

user ofr each loading condition.

IPRTIC(L) = 0

IPRTIC(L) = i

Dynamic array IPRTIC

Length = LEXTN

nodal and element-centered

values specified by the

user explicitly.

standard solution for uniform

load and homogeneous plate

requested by the user.

DEFINE IPRTIC, 5,HALF, STEP = 5

Defined in Subroutine PARTIC or STDPSL

Three level full word array of the nodal values

of the stress functions for each loading.

Referenced by loadings, nodes, and data.

SFTEMP(L,I,I) = U;

SFTEMP(L,I.2) =

Dynamic array SFTEMP

Length = LEXTN
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Length = JEXTN

Length = 2

DEFINE SFTEMP, LEXTN, JEXTN, 2

Defined in Subroutine STNBKS

H. 'RNDTEM' - Three level full word array for temporary storage

of nodal displacements during the bending

solution phase of a general plate problem.

Referenced by loadings, nodes, data.

RNDTEM(L, I, I) =u.
I

RNDTEM(L, I, 2) =v.
I

Dynamic array RNDTEM

Length = LEXTN

Length = JEXTN

Length = 2

DEFINE RNDTEM, LEXTN, JEXTN, 2

Defined in Subroutine STNBKS

I. Scalars in C_MM_N:

i. IPROB = indicator of problem type and solution

.

,

phase

=0

=i

=2

=+

stretching problem

bending problem

general plate problem (both

stretching and bending)

stretching solution phase

bending solution phase

IBCON = connectivity of plate (number of closed

boundary curves

NSYM = indicator of type of stiffness matrix

to be used in solution

= i sy_netric

= 2 non-symmetric
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APPENDIX 2

Revised and Extended C_4_N Map

This appendix presents the complete map of C_N storage

area used by the dual finite element plate analysis subroutines.

The map is an extension of the Finite Element Analyzer C_MM@N map

found in Appendix 2 of reference I

Nam__._._e Rel° Add. Displacement Remarks

Hex. Dec.

ICES C_MM_N POOL

QQDUB(2) 1-2 000 0000

ICOM 3 OO8 0008

IERROR 4 OOC 0012

ICOML 5 010 0016

QQCOM(75) 6-80 014 0020

SCRATCH C_N POOL

Ii to 136 81-116 140 0320

TI to T36 117-152 IDO 0464

DI to DI0 153-172 260 0608

TEMPI(9) 173-180 2BO 0688

NSOL 181 2DO 0720

TEMP2(48) 182-230 2])4 0724

"LEXT 231 398 0920

(pointer) 232 39C 0924

POINTI(4) 233-236 3AO 0928

IBAND 237 3BO 0944

(pointer) 238 3B4 0948

IFDT 239 3B8 0952

(pointer) 240 3BC 0956

CDL Scratch Common

Pool (DI to DI0 are

double words)

Number of nodes at

which displacements are

not fully prescribed

Independent active

loadings

Semibandwidth for hyper

columns of stiffness

matrix

bit picture of stiffness
matrix



Name
m

KDIAG

(pointer)

KOFDG

(pointer)

IOFDG

(pointer)

KPPRI

(pointer)

FCMAT

(pointer)

ICUREL

(pointer)

IRELI

(pointer)

POINT2 (2)

FILLI (6)

ISCAN

FILL2(52)

CFLEN

CFWT

CFANG

CFTEMP

CFTIME

FILL3 (i0)

LDID

(pointer)

DUMI

LEXTN

LTYP

(pointer)

'81-

Rel. Add. Displacement

hex. Dec.

241 3C0 0960

242 3C4 0964

243 3C8 0968

244 3CC 0972

245 3DO 0976

246 31)4 0980

247 3D8 0984

248 3DC 0988

249 3EO 0992

250 3E4 0996

251 3E8 i000

252 3EC 1004

253 3FO 1008

254 3F4 1012

255-256 3F8 1016

NON-DICTIONARY C_MM_N POOL

257-262 400 1024

263 418 1048

264-315 41C 1052

316 4EC 1260

317 4FO 1264

318 4F4 1268

319 4F8 1272

320 4FC 1276

321-330 500 1280

DICTIONARY C@_@N POOL

331 528 1320

332 52C 1324

333 530 1328

334 534 1332

335 538 1336

336 53C 1340

Remarks

Diagonal submatrices

of stiff, matrix

Off-diagonal submatrices

of stiff, matrix

Non-zero submatrices in

each row of stiff, mat.

Load vector and result

vector

Non-symmetric stiffness

matrix elements

List of non-zero rows

in each hyper column

of non-sym, stiff, mat.

Indicator of non-zero

columns of each row of

non-sym, stiff, matrix

Dummy

Scanning mode indicator

Dummy

Conversion factor for

length

Conv. factor for weight

Conv. factor for angle

Cony. factor for Temp.

Cony. factor for time

Dummy

Loading names

Dummy

Total number of loadings

Loading type
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Nanle

LDLIST

(pointer)

LDTLE

(pointer)

JTID

(pointer)

JEXTN

JTYP

(pointer)

DUM2(2)
JTXYZ

(pointer)
JTLOD

(pointer)

FILL4(43)
NJ

DUM3

NLDSI

Rel. Add. Displacement

Hex. Dec.

337 540 1344

338 544 1348

339 548 1352

340 54C 1356

341 550 1360

342 554 1364

343 558 1368

344 55C 1372

345 560 1376

346 564 1380

347 568 1384

348 56C 1388

349-350 570 1392

351 578 1400

352 57C 1404

353 580 1408

354 584 1412

355-399 588 1416

400 63C 1596

401 640 1600

402 644 1604

403 648 1608

ID 404 64C 1612

FILL5(5) 405-409 650 1616

JINT 410 664 1636

(pointer) 413 670 1648

FILL6(26) 414-439 674 1652

ELID 440 6DC 1756

(pointer) 441 6E0 1760

DUM4(2) 442-443 6E4 1764

Remarks

Loading list

Loading titles

Node names

Total number of nodes

Node type

Dummy

Node coordinates

Nodal loads

Dummy

Number of active nodes

Dummy

Number of independent

loading conditions

Number of degrees of

freedom

Problem type

Dummy

Input to analysis node

correspondence

Dummy

Element names

Dummy



Name

ELPROP

(pointer)

ELTOP

(pointer)

ELOADS

(pointer)

DUM5 (i0)

ELINT

(pointer)

ELEXT

(pointer)

NBXTEL

NBEL

NSYM

NGEN

ELSTDE

ELSTDG

ELSTCT

ELSTDS

ELSTPO

FILL7 (4)

ELSTMT

(pointer)

NODISP

(pointer)

STRAIN

(pointer)

STRESS

(pointer)

PRSTRN

(pointer)

PRSTRS

(pointer)
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Re1. Add. Displacement

Hex. Dec.

444 6EC 1772

445 6FO 1776

446 6F4 1780

447 6F8 1784

448 6FC 1788

449 700 1792

450-459 704 1796

460 72C 1836

461 730 1840

462 734 1844

463 738 1848

464 73C 1852

465 740 1856

466 744 1860

467 748 1864

468 74C 1868

469 750 1872

470 754 1876

471 758 1880

472 75C 18.84

473-476 760 1888

477 770 1904

478 774 1908

479 778 1912

480 77C 1916

481 780 1920

482 784 1924

483 788 1928

484 78C 1932

485 790 1936

486 794 1940

487 798 1944

488 79C 1948

Remarks

Element properties

Connectivity table

Element loads

Dummy

Input to analysis ele-

ment correspondence

Analysis to input ele-

ment correspondence

Total number of ele-

ments

Number of active ele-

ments

Symmetry indicator

General plate indicator

Standard Young's modulus

Standard shear modulus

Standard coefficient

of thermal expansion

Standard density

Standard Poisson's

coefficient

Dummy

Element stiffness

Nodal displacements

Element strains

Element stresses

Element principal
strains

Element principal
stresses
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Name

FILL8(5)
IPROB

IBCON

BDID

(pointer)
BDCOND

(pointer)
DISLOC

(pointer)
PBSOLN

(pointer)
PBSOLE

(pointer)
SFTEMP

(pointer)
RNDTEM

(pointer)
IPRTIC

(pointer)

Rel. Add. Displacement

Hex. Dec.

489-493 7A0 1952

494 7B4 1972

495 7B8 1976

496 7BC 1980

497 7C0 1984

498 7C4 1988

499 7C8 1992

500 7CC 1996

501 7D0 2000

502 7D4 2004

503 7D8 2008

504 7DC 2012

505 7E0 2016

506 7E4 2020

507 7E8 2024

508 7EC 2028

509 7F0 2032

510 7F4 2036

511 7F8 2040

Remarks

Dummy

Problem phase indicator

Boundary connect ivity

Boundary names

Boundary conditions

Dislocations

Nodal values of par-
ticular solution

Element values of

particular solution

Nodal values of the

stress functions

Temporary array of

nodal displacements

Indicator of data in

array PBSOLE
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APPENDIX3

Program Documentation

A3-1 _eneral Organization

The general organization of the programming system is the same

as that of the Finite Element Analyzer, as shown in Figures A3-1,

A3-2, and A3-3 of Ref. I., with the following load modules substituted

for the original Finite Element Analyzer modules:

Module replaces Original Module

STINGEN STEGEN

STNSAS STEASS*

STNBCM STJPRC

STNSSL STSLVR*

STNBKS STEBKS

(* indicates modules replaced only in the case of a non-symmetric

global stiffness/flexibility matrix)

AE-2 Input Programs Documentation

a) CDL Programs:

I. BOUNDARY INCIDENCES command

2. MTRAN (a CDL subroutine)

3. BOUNDARY CONDITIONS command

4. STABC (a CDL subroutine)

5. SIMPLE SUPPORT command

6. IN-PLANE ROLLER command

7. NORMAL ROLLER command

8. CLAMPED EDGE command

9. FREE EDGE command

IO.LINE LOAD command

II.GRAVITY LOAD command

12.BENDING PARTICULAR SOLUTION command

13.LPROC (a CDL subroutine)

14.XROUT (a CDL subroutine)

15.DISLOCATION command

b) ICETRAN and FORTRAN input programs
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Program Name:
Author:

Date:

Language:
Program Description:

Linkage to Program:

Usage:

Program Output:

Program Length:

Load Module:

Linkage from Programs:

Linkage to Programs:
Error Procedure:

BDINIT

D. A. Nagy

May 1967
ICETRAN

BDINIT processes the tabular heading
commandBOUNDARYINCIDENCES.It initial-

izes the connectivity (boundary)

counter IBC_Nand defines the array of

boundary names(BDID) and the array of

boundary chains (BDC_ND). It checks
the commonvariable ID to determine

what type of problem the user has specified,
and sets IPROBaccordingly:

IPROB=0 plate stretching
(plane stress)

IPROB=-I plate bending

IPROB=+2 general plate
(both stretching and
bending)

It is called by CDL

STRUDLsubsystem
BOUNDARYINCIDENCESCOMMAND

None

22 cards ICETRAN

808 bytes object program

BDINIT

None

None

If the user specified some TYPE other

than PLANE STRESS, PLATE BENDING, or

GENERAL PLATE, the following message

is printed: 'BOUNDARY INCIDENCES COI_IAND

VALID ONLY FOR PLANE STRESS, PLATE BEND-

ING, AND GENERAL PLATE PROBLEMS--ERROR.'

ISCAN is set equal to 2.

i
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IBC@N=IBC_N + i

Store boundary name

Define boundary

subarray BDC@ND(1)

Locate node number

first node in chain
found

Is it actually a

boundary node?

I I
yes no

_ Define subarray of
boundary conditions for

current, node BDC_ND (l,J)

Store node number in firstlocation of BDC_ND (l,J)
I

½
Locate an element contain-

ing current boundary node

by looping on the element
incidence list

yes

I

Print error[

message j
I

I .

no_Print error
|message

e

iDoes it contain the next

boundary node (in the +s

direction)?

no

on element incidence

list to find another

element

yes
V

Check if the next'[

node is the first [
g

node of the chain, [

i.e., if the chaini

is completed. I

no yes

I'Ne_t node becomes

current node

yes-

I

Print error

I message
I

NBDASS Flow Chart

Print error I

message I

i

Return I
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Program Name:

Author:

Date:

Language:

Program Description:

Program Logic :

Linkage to Program:

Usage:

Program Output:

Program Length:

Load Module:

Linkage to Programs:

Linkage from Programs:

Error Procedure:

MTRANS

D, A. Nagy

July 1967

F_RTRAN IV

MTRANS translates an integer of four or

less digits into alphanumeric repre-

sentation.

It overlays upon the double word DIO the

two integers I(i) and 1(2). Then it performs

integer arithmetic on 1(2) to create the

appropriate EBCDIC (extended binary

coded decimal interchange code)

representation for the digits of the

integer being translated.

It is called by CDL

STRUDL subsystem

various input commands

None

26 cards F_RTRAN IV

808bytes object program

BDINIT, PARTIC

None

None

None
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L
I Overlay DIO with iI(i) and 1(2)

1
I Place EBCDIC code for i4 blanks in I(i)

1
I Determine the digit 1in thousands position

no

|

yes

i

Place EBCDIC code for i

digit in thousands lposition of 1(2)
i

_ ,

I set INDIC=I 1

i

_Place blank in the

Ithousands position

in I (2)

I Set INDIC=0

Loop on remaining 3

digit positions

Determine value of digit

no

yes__yes

no

Place EBCDIC code for

digit in 1(2)

INDIC=I

ace blank in digit

position in 1(2)

Continue

Return

MTRANS Flow Chart



Program Name:
Author:

Date:

Language:

Program Description:

ProgramLogic:

Linkage to Program:

Usage:

Program Output:

ProgramLength:

Load Module:

Linkage from Programs:

Linkage to Programs:

Error Procedure:
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NBCCP

D. A. Nagy

May 1967

ICETRAN

NBCCP is the boundary conditions commands

£rocessor. It manages the storage of

boundary condition values in their

appropriate locations in the dynamic

array BDCOND.

It calls GETNOS to obtain the necessary

information about the boundary portion

being processed. It then branches to

the appropriate routine for whatever

type of boundary condition was specified.

The branch is made on an indicator (II)

set by CDL. In each routine, it makes

appropriate use of STBV to store the

boundary condition values and set

indicators.

CALL NBCCP, or called by CDL

STRUDL subsystem

processing of boundary condition commands

None

224cards ICETRAN

4824bytes object program

BDINIT

NSCCP

GETNOS

NSTBV

None
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, Call GETNOS

1

I I i

Shift boundary con-
dition data values

if problem is only

bending ,

1
I Branch on value of Ii I

J Routine for

j processing

J displacement

I boundary

[ conditions

I Call NSTBV
i

Routine for

processing
stress boun-

dary condi-
- tions

t
Call NSTBV

3 4 5 6

i

Routine for

processing
elastic boun-

dary
i

Routine for

process ing

mixed boun-

dary condi-

J tions ._

Call NSTBV

q

I j Routine for

j processing

J edge beam

I boundary

I Call NSTBV ]

-_| Return |X

II

Routine for I

process ing

rigid boun-

dary types

Call NSTBV J

NBCCP Flow Chart
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Program Name:
Author:

Date:

Language:

Program Description:

Program Logic:

Linkage to Program:

Usage:

ProgramOutput:
ProgramLength:

Load Module:

Linkage from Programs:

Linkage to Programs:
Error Procedure:

GETNOS

D. A. Nagy

May 1967
ICETRAN

Given a boundary nameand the names

of two nodes on that boundary, it

locates the boundary number, the node

numbers, and the positions of the two

nodes on the boundary chain.
It loops on BDID to find the boundary

number (position in BDID). It loops

on JTID to find the node numbers, and

then it loops through the boundary

chain to locate the positions of the
two node numbers.

CALLGETNOS(DI,D2, D3, I, J, K, JC, KC)

where Dl=the boundary name

D2=first given node name

D3=secondgiven node name

J =numberof first given node

K =numberof second given node

I =boundary number

JC=position of first node in the

given boundary chain
KC=position of the second node

STRUDLsubsystem

processing of boundary condition commands
None

59 cards ICETRAN

1704bytes object program

BDINIT
NBCCP
None

If boundary 'DI' was not previously

defined, the following messageis printed:
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Error Procedure:

(continued)

'BOUNDARY 'DI' NOT PREVIOUSLY DEFINED--

ERROR.'

If either node 'D2' or 'D3' was not

previously defined, the following

message is printed:

'NODE 'name' NOT PREVIOUSLY DEFINED--

ERROR.

In all the above errors, ISCAN is set

equal to 2.
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Loop on BDID to find
boundary numberfrom
given name

yes

Loop on JTID to find
first node number from

given node name

yes
t

Loop on JTID to find
last node number from

given node name

no

yes

Loop through BDCOND to

find first node's posi-

tion in boundary chain.

y_s
i

I oop through BDCOND to
find last node's posi-

tion in boundary chain.
i i

no

yes

irinterrorImessage

q i

I ISCAN=2Return

Print error imessage
I

I I

--I_I Return i

GETNOS Flow Chart
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Program Name:
Author:

Date:

Language:

Program Description:

ProgramLogic:

Linkage to Program:

Usage:

Program Output:

Program Length:

Load Module:

Linkage from Programs:

Linkage to Programs:
Error Procedure:

NSTBV

D. A. Nagy

May 1967
ICETRAN

NSTBVtransfers boundary condition

values from a dimensioned array to

the dynamic array BDCOND(IB)for a

string of specified nodes and sets the

boundary condition indicator BDCOND(IB,

NODE,2 or 3). It then adds the

integer to JTYP(NODE)necessary to in-

dicate that boundary conditions have been

specified for the node.

It loops through the boundary chain

nodes consecutively, performing the

tasks mentioned above. At each node,
it loops through the dimensioned array,

transferring the values.

CALLNSTBV(IB,JP, KP, 1END,ARRAY,ICHNG)

where IB =boundary number

JP =first node position

KP =last node's position
l_qD =numberof values to be

transferred

ARRAY=dimensioned array of values
to be transferred

IC_IING=integer to be added to JTYP
for each node

STRUDLsubsystem

processing of boundary condition commands
None

20 cards ICETRAN

1000bytes object program
BDINIT

NBCCP

None

None
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i I

Loop through boundary

chain IB from N=node

position JP to node

position KP

I

,I

Loop through dimensioned

array from I=i to 1END
I

BDCOND(IB,N,I+I)=_Y(I)

NSTBV Flow Chart
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Program Name:

Author:

Date:

Language:

Program Description:

Program Logic:

Linkage To Program:

Usage :

Program Output :

Program Length:

Load Module:

Linkage from Programs:

Linkage to Programs:

Error Procedure:

NSCCP

D. A. Nagy

May 1967

F_RTRAN IV

NSCCP is the preliminary processor for

the following commands:

SIMPLE SUPPORT

HORIZONTAL ROLLER

VERTICAL ROLLER

CLAMPED EDGE

FREE EDGE

It zeroes all values in the array of

boundary condition values. It then

branches to the appropriate routine

for the command that called it (indi-

cated by the value if Ii). Each routine

sets the appropriate indicator(s) and

calls NBCCP to process the boundary

conditions implied by the command that

called NSCCP.

It is called by CDL

STRUDL sybsystem

standard boundary type commands

(see list above)

None

cards FSRTRAN IV

bytes object program

BDINIT

None

NBCCP

None
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I
of data values

F ' IBranch on value of

Ii

1 2 _

Simple Support:

Set indicator II

for displacement

boundary condi-

tions (stretching

problem)
I

1

Set I1 for mixed_

boundary condi- _
tions (bending |

problem) I

Horizontal

Roller:

Set Ii for

stress b.c.

(stretch-

ing prob. )

Call NBCCP I

I Return I

I Vertical Roller:

Set II for dis-

placement b.c.

(stretching

problem)

Ica11NB°_I

Set Ii for stress I
boundary conditions

(bending problem)

Clamped Edge:
Set Ii for

displacement

b.c. (both

stretching and

bending)

i!

Free Edge :

Set II for

stress b.c.

(both stretch-

ing and bend-

ing)

Call NBCCP

I
I
!

!

|

!

I

i
Return

NSCCP Flow Chart
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ProgramName:
Author:

Date:

Language:

Program Description:

Program Logic :

Linkage to Program:

Usage:

Program Output:

Program Length:

Load Module:

Linkage from Programs:

Linkage to Programs:

Error Procedure:

DISLCP

D. A. Nagy

May 1967

ICETRAN

DISLCP processes the DISLOCATION

command.

It checks if the command is appropriate,

i.e., if the problem is one of plane

stress in a multiply-connected plate.

It checks if the pointer array of

dislocations is defined, and if not,

it defines it. It determines the number

I of dislocatio_already specified,

defines the subarray DISLOC(I+I) and

stores the specified information in it.

It is called by CDL

STRUDL subsystem

DISLOCATION command

None

52 cards ICETRAN

1744bytes object program

PARTIC

None

None

If the plate is simply-connected,

the following messages are printed:

'DISLOCATION COMMAND APPLIES ONLY TO

MULTIPLY-CONNECTED PLATES.'

'COMMAND WILL BE IGNORED.'

If the problem is one of plate

bending only, the following messages are

printed: 'DISLOCATION COMMAND APPLIES

ONLY TO THE PLANE STRESS PROBLEM.'

'COMMAND WILL BE IGNORED. I
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Error Procedure :

(continued)

If any of the nodes on the dis-

location path were not previously

defined, ISCAN is set equal to 2 and

the following message is printed:

'NODE 'name' WAS NOT PREVIOUSLY DEFINED--

ERROR.'

i H

[ IS the plate simply connected? I
I

no

Is the problem bendin

no

Define DISL,

Determine position of current

dislocation in list (I)

7
I Print error__messages |

r • Print error i

I messages I

[ Return _-._

Define DISL_C(I

Store values of _u

Determine node number from

node name for each node.

Store node number in DISL@C

Return

yes

Print error

message

no

DISLCP Flow Chart



-103-

Program Name:
Author:

Date:

Language:

Program Description:

Program Logic :

Linkage to Program:

Usage:

Program Output:

Program Length:

Load Module:

Linkage from Programs:

Linkage to Programs:
Error Procedure:

LINL_D

D. A. Nagy
May 1967
ICETRAN

LONL_Dprocesses the LINE L_ADcommand,

converts the specified linearly-varying

line load to equivalent nodal loads,

and stores in the appropriate array.

It checks each node along the line to

see if it has been previously defined.

It checks that each node is connected to the

previously-specified one by an element,i.e.,

that the line load coincides with element

edges at all times. If these requirements

are met, it computes the contribution of

the line load intensity to the generalized

nodal load at each node and adds it to

the generalized nodal load stored in

JTL@D.

It is called by CDL

STRUDL subsystem

LINE L_AD command

None

77 cards ICETRAN

2896bytes object program

PARTIC

None

None

If any of the specified nodes along

the line load were not previously de-

fined, the following message is printed:

'NODE 'name' NOT PREVIOUSLY DEFINED--

ERROR.'

If any two nodes along the line are

not connected directly by an element

edge, the following message is printed:

'NODE 'name' NOT CONNECTED TO PREVIOUS
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Error Procedure:
(continued)

NODEBYANYELEMENT--ERROR.'

In both error cases, ISCANis set

equal to 2.

I Find node numberifrom given name

yes
#

nlS this the first lode on the line?
I I
no yes

1
Is this node con-|

nected to the |
$

previous node? |
' I |'"
yes no
I I

, _ .

Compute contributions !

of load intensity to |

this node and previous i
node !

, , |
,

Add contributions to

the generalized nodal

loads in JTL_D

i _ i i,H

I IStore this node and
its force intensities

in temporary location

_i Print errorme ssag e

?
II I

Store node

number and

force inten-

sities in

temporary

location

i

I

_i Print error Imessage

-! Returns

LINL_D Flow Chart
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Program Name:
Author:

Date:

Language:
Program Description:

Program Logic:

Linkage to Program:

Usage:

Program Output:

ProgramLength:

Load Module:

Linkage from Programs:

Linkage to Programs:
Error Procedure:

GRVLCD

D. A. Nagy

May 1967

ICETRAN

GRVL_D processes the GRAVITY L@AD

command and calculates the contribution

of the element weight to the general-

ized nodal loads at the three corners.

It loops on the elements, calculating

the area, volume, weight, x and y

components of the gravity vector, and

finally the contributions to the

generalized nodal loads of the three

nodes at the corners of each element.

It is called by CDL

STRUDL subsystem

GRAVITY L_AD command

None

49 cards ICETRAN

1728bytes object program

PARTIC

None

None

If the problem is only one of plate

bending, or if the gravity vector is

perpendicular to the plate, the follow-

ing messages are printed:

'COMPONENT OF THE GRAVITY LOAD PERPEN-

DICULAR TO PLATE MUST BE SPECIFIED VIA

PARTICULAR BENDING SOLUTION.'

'GRAVITY LOAD COMMAND IS IGNORED.'
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l ls problem only

bending? ,
!

no

es
Print

message

Is gravity vector

perpendicular to

the plate?
, ,

-- yes

Loop on all elements

I Return

I Check for correct Ielement-node incidence

@ no
yes

Calculate contributions I

of element weight to the_

generalized nodal loads

Add contributions to IJTLOD

ISCAN=2

__ Error ]
message_

Return

GRVLOD Flow Chart
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Program Name:

Author:

Date:

Language:

Program Description:

Program Logic:

Linkage to Program:

Usage:

Program Output:

Program Length:

Load Module:

Linkage from Programs:

Linkage to Programs:

Error Procedure:

PARTIC

D. A. Nagy

May 1967

ICETRAN

PARTIC processes the PARTICULAR

BENDING SOLUTION command.

It branches on the indicator II (set

by CDL), depending on whether nodal or

element-centered values of the partic-

ular bending solution are specified.

It checks if the appropriate storage

arrays are defined, and if not, it

defines them. It then locates the node

or element numbers from their given

names and stores the values of the particular

solution in PBS_LE (for elements).

It is called by CDL

STRUDL subsystem

PARTICULAR BENDING SOLUTION command

None

58 cards ICETRAN

2456bytes object program

PARTIC

None

None

If any specified node or element was

not previously defined, ISCAN is set

equal to 2 and the following message

is printed:

'NODE(or ELEMENT) 'name' NOT PRE-

VIOUSLY DEFINED--ERROR.'
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Check definition of IPBS_LN
i

y_S [ Print error I

J [ _essage

[, ISCAN=2 [

Store values
of K ,K of

particular

solution in

PBS_LN .

i
IAre specified values nodal [or element centered?

elem_ent

no_dal

Return
r

Check definition of

PBS_LE

Locate element numbers

from specified names

I Store values

of K ,K of
x

partlcu_ar

solution in

PBS_LE

.1

|

yes [ Print error

I message

|

I ISC/_=2

1

PARTIC Flow Chart



Program Name:
Author:

Date:

Language:

Program Description:

Program Logic:

Linkage to Program:

Usage:

Program Output:

Program Length:

Load Module:

Linkage from Programs:

Linkage to Programs:
Error Procedure:
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STDPSL

D. A. Nagy
May 1967
ICETRAN

STDPSLprocesses the PARTICULARSOLUTION

UNIFORMLOADcommand. It computesthe

exact nodal values of the particular
solution functions K and K and stores

x y
them in PBS_LE. It then evaluates the

exact integral of K and K over each
x y

element and stores these values in

PBS_LE. An indicator, IPRTIC, is set

equal to i if PBS_LEcontains integrals
instead of element-centered values.

It loops consecutively through the node

list calculating the nodal values and

storing them. It then loops consecu-

tively through the element list evalu-

ating the integrals and storing them.

It is called by CDL

STRUDLsubsystem
PARTICULARSOLUTIONUNIFORMLOADcommand

None

137cards I CETRAN

5104bytes object program

PARTIC
None

None

Since this program only applies to plates
of constant thickness, the thickness value

used in computations is obtained from the

firstelement. If this value is zero,

ISCANis set equal to 2 and the following

messageis printed:
'ELEMENT'name' HASZEROTHICKNESS--ERROR.



-110-

i
from first element

Check thickness value

h=0? 'es

no

reference frame

)articular solution

_i Print errorlmessage I

on nodes

Compute nodal values of
K and K
x

tore in PBS_LN

Loop on elements

Compute geometry of element

I Evaluate exact integralsover element's surface

Store in PBS@LE

I Return_

STDPSL Flow Chart
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ProgramName:
Author:

Date:

Language:

Program Description:

ProgramLogic :

Linkage to Program:

Usage:

Program Output:

Program Length:

Load Module:

Linkage to Programs:

Linkage from Programs:

Error Procedure:

STNGEN

D. A. Nagy
July 1967
ICETRAN

STNGENis the executive program for the

element stiffness matrix generation

phase.

It defines the array ELSTMTin which the
element stiffness matrices will be

stored. It then loops on the active

elements checking the element type, obtain-

ing the necessary properties, calling

STGFTDto perform the actual matrix

generation for each element, and then

storing the resulting matrix in ELSTMT.
LINK TOSTNGEN

STRUDLsubsystem

Finite Element Analyzer
None

65 cards ICETRAN

2432bytes object program
STNGEN

STGFTD

STEMAI

If the element type is not 'FT_D', ISCAN

is set equal to 2 and the following

messageis printed:
'ELEMENT'name'IS NOTOFTYPE'FT_D'--ERROR.'

If an element has zero thickness, ISCAN

is set equal to 2 and the following

messageis printed:
'ELEMENT'name' HASZEROTHICKNESS--ERROR.'



-112-

Define element stiffness

matrix array ELSTMT

Loop on active elements

J Check element type I

_no i.m::::,:**o,I
yes

Obtain coordinates of the

element's corners

Obtain Young's Moduli,

Poisson's Ratios, and

shear modulus for the

element

Obtain element thickness

H=O? yes

no

t
Call STGFTD (XI,YI,X2,Y2, |

X3,Y3, EX, EY,PX,Py,G,H, IIPROB, TEMP)

½
I

I Store element stiffness I

---_matrix from TEMP (24) into I
I ELSTMT

t
lReturn!_

Print error

message

ISCAN=2

STNGEN Flow Chart



Program Name:
Author:

Date:

Language:

Program Description:

ProgramLogic:

Linkage to Program:
Usage:

Program Output:

Program Length:

Load Module:

Linkage to Programs:

Linkage from Programs:
Error Procedure:
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STGFTD

D. A. Nagy

May 1967

FCRTRAN

STGFTD calculates the elements of

the behavior matrix for elements

of the type 'FT_D' and stores them

in a dimensioned array TEMP(24)

according to the following cor-

respondance:

m

I 21s ot!ic
3 4 i I

w

7 8111 121

15 16_ 19 20 123 24

STGFTD checks for consistency and

adequacy of the material properties

transmitted to it. If IPR_B<0, the

problem is a bending problem and subroutine

NDUAL is called to perform the necessary

duality conversion of material properties.

Called STGFTD

STRUDL subsystem

Finite Element Analyzer

None

29 cards F_RTRAN program

l176bytes object program

STNGEN

NDUAL

STEGEN •

None
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no yes

no

no ,

J%

[no

I Call NDUAL (EX, EY, PX, PY, G, H) l
i

.i.i..__ el" ement behavior

STGFTD Flow Chart
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ProgramName:
Author:

Date:

Language:

Program Description:

Linkage to Program:

Usage:

Program Output:

ProgramLength:

Load Module:

Linkage from Programs:

Linkage to Programs:
Error Procedure:

NDUAL

D. A. Nagy
May 1967

F_RTRAN

NDUALperforms the duality conversion

of material properties from the

stretching problem to the bending

problem (see Table I

CALLNDUAL(EX, EY, PX, PY, G, H)

STRUDLsubsystem

Finite Element Analyzer
None

9 cards F_RTRANprogram

512 bytes object program
STNGEN

STGFTD
None

None



ProgramName:
Author:

Date:

Language:

ProgramDescription:

ProgramLogic:

Linkage to Program:

Usage:

ProgramOutput:

ProgramLength:

Load Module:

Linkage from Programs:

Linkage to programs:
" Error Procedure:
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STNSAS

D. A. Nagy

August 1967
ICETRAN

STNSASis the assembler of the complete

global stiffness matrix for the case

of non-symmetric problems.

It loops on the elements, obtaining the

3 nodes incident upon each element and

adding the appropriate contributions to

the submatrices of the global stiffness

matrix. It also constructs two bookkeep-

ing arrays to indicate the location of
non-zero submatrices in the global stiffness

matrix.

LINK TOSTNSAS

STRUDLsubsystem

Finite Element Analyzer
None

72 cards ICETRAN

5160bytes object program

STNSAS

STEMAI

None

None
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I l

I Define matrix storage arrayFCMAT
l

Define bookkeeping arraysICUREL and IRELI

m Loop on all active elements

Obtain the numbers of the

3 nodes incident upon the

current element

Loop on the 3 nodes

Is current

numbe r_NSOL ?

no

Store contributions to the

stiffness matrix from

current element into FCMAT

Update bookkeeping array

IRELI

Construct in ICUREL the list

of nonzero row elements for

each column of FCMAT

STNSAS Flow Chart
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A3-5 Solver Interface ProK_am

Program Name:

Author:

Date:

Language:

Program Description:

Program Logic:

Linkage to Program:

Usage:

Program Output:

Program Length:

Load Module:

Linkage to Programs:

Linkage from Programs:

Error Procedure:

STNSSL

D. A. Nagy

August 1967

ICETRAN

STNSSL is an interface program which allows the

system to use a non-symmetric solver written

originally for another system.

The non-symmetric solver solves for only one

loading condition, expects the load vector

to be in a different form than KPPRI, and

returns the solution values in a vector of

different form from KPPRI. Thus the interface

program transfers the generalized loads/rotation

from KPPRI to another vector, calls the non-

symmetric solver once for each independent

loading condition, and transfers the solution

values back into KPPRI.

LINK TO STNSSL

STRUDL subsystem

Finite Element Analyzer

None

21 cards ICETRAN

1120 bytes object program

STNSSL

STNDUM (the actual solver)

None

None
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A3-6 Boundary Condition Programs

Program Name: STNBCM

Author: D.A. Nagy

Date: August 1967

Language: ICETRAN

Program Description:

Linkage to Program:

Usage:

Program Output:

Program Length:

STNBCM is the executive program for the boundary

conditions processing phase.

It determines whether the current problem is

bending or stretching and then calls the

appropriate subroutine to generate either the

generalizee nodal loads or rotations vector. It

then loops on all the boundaries, processing each

different boundary condition portion. It deter-

mines the type of boundary condition and then

calls a dictionary program that in turn calls the

appropriate subroutine to modify the global

stiffness/flexibility matrix and load/rotation

vector.

LINK TO STNBCM

STRUDL subsystem

Finite Element Analyzer

None

57 cards ICETRAN

2072 bytes object program

Load Module: STNBCM

Linkage to Programs: STNSLV

STNBLV

DICES

DICTB

Linkage from Programs: None

Error Procedure: If the boundary conditions for some portion of

a boundary are not specified, the following

message is printed: 'CONDITIONS FOR BOUNDARY

'name' NOT COMPLETELY SPECIFIED--ERROR'

Program Logic:
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Program Names :

Author :

Date :

Language :

Program Descriptions :

Linkage to Programs:

Usage:

Program Output:

Program Lengths:

Load Module

Linkage from Programs:

Error Procedure:

STNSLV_ STNBLV

D. A. Nagy

August 1967

ICETRAN

STNSLV constructs the generalized nodal load

vector and stores it in the array KPPRI. STNBLV

_onstructs the generalized nodal rotations

vector, including the contribution of the par-

ticular solution, and stores it in KPPRI. Only

the active, independent loadings are considered.

CALL STNSLV or CALL STNBLV

STRUDL subsystem

Finite Element Analyzer

None

STNSLV:

STNBLV:

STNBCM

STNBCM

None

33 cards ICETRAN

1232 bytes object program

71 cards ICETRAN

1280 bytes object program
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Program Names:

Author:

Date:

Language:

Program Descriptions:

Linkage to Programs:

Usage:

Program Output:

Program Length:

Load Module:

Linkage to Programs:

DICTS, DICTB

D. A. Nagy

August 1967

FORTRAN IV

DICTS and DICTB are dictionary programs that

branch to the appropriate subroutine for

processing stretching or bending boundary

conditions, respectively, over a boundary

portion starting at node NODE of boundary

IBN. The type of condition is IBC.

CALL DICTS (IBN,IBC,NODE)

CALL DICTB (IBN,IBC,NODE)

STRUDL subsystem

Finite Element Analyzer

None

DICTS:

DICTB:

STNBCM

DICTS to SDISPL

SSTRESS

SELAST

SEDGEB

SMIXED

SRIGID

Linkage from Programs: STNBCM

Error Procedure: None

19 cards FORTRAN IV

15 cards FORTRAN IV

DICTB to BDISPL

BSTRESS

BELAST

BEDGEB

BMIXID

BMIX2D
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Program Names:

Author:

Date:

Language:

Program Descriptions:

Linkage to Programs:

Usage:

Program Output:

Load Module:

Linkage to Programs:

Linkage from Programs:

Error Procedure:

SDISPL,SSTRES,SELAST,SEDGEB,SMIXED,SRIGID,

BDISPL,BSTRES,BELAST,BEDGEB,BMIXID,BMIX2d

D. A. Nagy

August-September 1967

ICETRAN

These programs are the routines for processing

the boundary condition portions of each boundary.

The modifications to the global stiffness/flex-

ibility matrix and loads/rotations vector are

as given in Chapter 3.

CALL Program (IBN, NODE)

where IBN = number of the boundary

NODE = position of first node of the

portion on the given boundary

STRUDL subsystem

Finite Element Analyzer

None •

STNBCM

None

DICTS, DICTB

None



ProgramName:
Author:

Date:

Language:

Program Description:

Program Logic:

Linkage to Program:

Usage:

Program Output:

Program Length:

Load Module:

Linkage to Programs:

Linkage from Programs:
Error Procedure:
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STNBKS

D. A. Nagy

June 1967

ICETRAN

STNBKS is the executive program for the

backsubstitution phase.

It transfers the results of the analysis

from KPPRI to N_DISP and combines the

results for the various loading combina-

tions. It then loops on all active

elements, obtaining the material and

geometric properties necessary for the

computation of element stresses and

strains. It calls STESTR (for the

bending problem) to compute the stresses,

strains, principal stresses and strains,

stress couples, and curvatures for each

element. Next it either stores the

nodal displacements in a temporary array

or retrieves them from that array or returns,

depending on the type of problem just

solved. Finally, if the problem just solved

was the stretching part of a general plate

problem, it transfers, to STEMAI (the main

executive of the Finite Element Analyzer)

to begin the bending part.

LINK TO STNBKS

STRUDL subsystem

Finite Element Analyzer

None

140cards ICETRAN

6448bytes object program

STNBKS

STESTR, STESCP, STEMAI

STEMAI

None
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Define array NODISP for storing

anal is results

Transfer results from KPPRI to NODISP

Combine results for loading combinations

Check for definition of stress and

strain

defined?

yes

Loop on all active elements

Define arrays for stress,

strain, principal stress,

rincipal strain.

Obtain material and geometric properties.

Check IPROB to see if the problem just

solved is bending or stretchin

stretching

I

Call STESTR to compute I

element stresses, strains|

principal stresses, and I

principal strains

Store computed values in arrays STRESS,
I

_ STRAIN _ PRSTRS _ PRSTRN

l

I Branch on value of _PROB i

-2 -I 0 +2

bending
.t

element stress couples,

curvatures, principal

stress couples, and

principal curvatures

Store n nodal displacement

values DTEM

stress

tions in '

i
I

iAdd 'STEMAI' to stack

and transfer to stack

- Return _
-i

t

I Retrieve t
nodal

, displacements|

STNBKS Flow Chart
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Program Name:

Author:

Date:

Language:

Program Description:

Linkage to Program:

Usage:

Program Output:

Program Length:

Load Module:

Linkage from Programs:

Linkage to Programs:

Error Procedure:

STESTR

D. A. Nagy

June 1967

ICETRAN

STESTR computes the stresses, strains,

principal stresses, and principal strains

for an element given the material and

geometric properties of the element.

CALL STESTR (EX,EY,PX,CX,CY,G,L,N,AR,A,

B,U,V,E,S,PS,PE)

STRUDL subsystem

Finite ElementAnalyzer

None

31 cards ICETRAN program

1408bytes object program

STNBKS

STNBKS

None

None
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Compute element strain

components _x' _y' l_z

Check if element is

subject to temperature

strains

temp.
strains

noIt
Compute element stress

c°mp°nents _x' _y' _'z

yes

_I Compute element

temperature strains
and add to the total

strain components

i
I Compute element

principal strain

components _1, _,,2

Return I

STESTR Flow Chart
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ProgramName:
Author:

Date:

Language:
Program Description:

Linkage to Program:

Usage:

Program Output:
ProgramLength:

Load Module:

Linkage from Programs:

Linkage to Programs:
Error Procedure:

STESCP

D. A. Nagy
June 1967

ICETRAN

STESCPcomputes the stress couples,

curvatures, principal stress couples,

and principal curvatures for an element

given the material and geometric

properties of the element. It includes
the contribution of the particular

solution.

CALLSTESCP(EX,EY,PX,CX,CY,G,H,L,N,AR,

A,B,U,V,E,X,PS,PE)

STRUDLsubsystem

Finite Element Analyzer
None

58 cards ICETRANprogram

2600bytes object program
STNBKS

STNBKS
None

None
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Compute contribution of

particular solution to the

element curvatures

Compute element stress

couples Mxx , Mx , M

Compute element curvature

components
xx' xy' yy

Check if element is subject

to temperature curvature
effects

temp.
curv. yes

Compute temperature

curvature components
and add to the total

curvature components

I Compute principal stress couple Icomponents MI, M 2

,
I Compute principal curvature Icomponents i' 2

_ Re_urn I

STESCP Flow Chart
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Program Name:

Author:

Language:

Program Description:

Linkage to Program:

Usage:

Program Output:

Program Length:

STNOUT

D. A. Nagy

ICETRAN

STNOUT is a temporary subroutine to output the

nodal displacements, element stresses, stress

couples, strains, curvatures, principal stresses,

principal stress couples, principal strains,

and principal curvatures for each loading condition

of the problem just solved. It is included

in the back substitution load module and is

called without the request of the user. It may

be replaced at a later date by a more complete

and selective set of output routines called

explicitly by the user.

CALL STNOUT

STRUDL subsystem

Finite Element Analyzer

For each active loading condition, it prints

out the nodal displacements (x and y components

only), element stresses, stress couples, strains,

curvatures, principal stresses, principal stress

couples, principal strains, and principal curvatures.

88 cards ICETRAN

2280 bytes object program

Load Module: STNBKS

Linkage to Programs: None

Linkage from Programs: None

Error Procedure: None
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APPENDIX 4

Table of Symbols in Alphabetical Order

a°

1

A

Ak

A
n

A k

b.
1

_k

C k

d k

D

D
n

D x, Dy

E.

E k

Ex, Ey

F

=

=

=

x component of side i considered as a vector

scalar defined by Eq (218)

matrix function of submatrices of the global flexibility
matrix, defined by Eq (193)

middle surface area of triangular element n

cross-sectional area of an edge beam

y component of side i considered as a vector

matrix defined by Eq (187) or Eq (219)

=

=

=

=

trigonometric matrix defined by Eq (178)

scalar defined by Eq (83)

; C' I' C' _ =matrix of moments at across section
t x ] y J x of an edge beam

scalar defined by Eq (80)

matrix defined by Eq (227)

trigonometric matrix defined by Eq (179)

rigidity coefficient for the stretching problem,
given by Eq (18)

rigidity coefficients for the bending problem, given
by Eqs (42) and (43)

matrix defined by Eq (57)

Young's modulus for an edge beam

Young's moduli in the x and y directions for an
orthotropic plate

matrix of forces applied externally to a rigid boundary

portion
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fo.

fss,fzz

fxx" fxy' fyy

P.

AF.

k

G

G i

_Cuk

h
n

H

H
_'n -

i,j,k

!2

I k

J
_n

kxx, kxyl etc.

matrix dual of _.j

elastic support flexibility coefficients

edge beam flexibility coefficients given by Eqs
(205) to (207)

(Fxi, Fy i) = vector of concentrated nodal forces

matrix portion of edge loads resisted by an edge beam

matrix defined by Eq (123)

scalar function of displacements (w) defined by
Eq (148)

matrix defined by Eq (217)

shear modulus

scalar defined by Eq (57)

matrix defined by Eq (230)

matrix defined by Eq (231)

average thickness of an element

matrix defined by Eq (220)

matrix function of geometric properties of segment
n, defined by Eq (94)

unit vectors in the x, y, and z directions

( 2 ×2) unit matrix

moment of inertia an edge beam about the z axis at
node k

matrix function of geometric properties of segment n,
defined by Eq (94)

elastic support stiffness coefficients
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xx xyk.. ,k.. ,etc.
1j 1j

K

K !

K x, Ky

K.n.

_°

1

L k

M

M°

M
P

M
nn

Mxx, Mxy, etc.

Nxi' Ny i

0 2

P

I

P

=

=

=

=

=

=

edge beam stiffness factors, given by Eq (84)

global stiffne_'S supermatrix ,

global flexibility supermatrix, dual of K

particular bending solution functions

element stiffness submatrix, defined by Eqs (14)

to (17) and Eq (24)

elastic support stiffness submatrix, defined by
Eqs (69) to (72}

length of segment i

matrix defined by Eq (214)

vector of applied edge moments

matrix of sines and cosines, defined by Eq (102)

moment applied externally to a Point p

edge moment (vector parallel to edge)' magnitude

bending stress couples, defined by Fig. 5

i i =vector of edge stress resultant
(Nnx' Nny) intensity on edge i

nodal values of edge stress resultant intensity

unit outward normal vector to the boundary in the

x-y plane

superscript denoting quantities associated with
thermal effects

(2×2} zero matrix

superscript denoting quantities associated with
the particular solution of the bending problem

(px, Py, pz ) = vector of distributed load intensity over
the middle surface of the plate
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pn.,pn.
xl yl

P_

Q

Qne

-Qi

Qx, Qy

R i

R.
_'1

a !

Rxi' Ry i

S

S

s k .

S

8 1

s.

S°

T k

AT

generalized nodal load components at node i due

to the distributed load components Px and py overelement n

matrixdualofP.={P P 1i xi yi '

generalized nodal loads due to Px

elements incident upon node i

the matrix of

and py over all

vector edge shear in the 7. direction

effective edge shear on the plate boundary in the z
direction

matrix given by Eq (180)

shears on the x and y faces of a differential
element, defined in Fig. 5

rotation matrix given by Eq (58)

generalized nodal load matrix due to edge load
intensities

generalized nodal rotation matrix dual of R.

components of R.

distance along the boundary

superscript denoting quantities associated with the
edge support

vector tangent to the boundary

scalar defined by Eq (82)

column supermatrix of generalized nodal loads

column supermatrix of generalized nodal rotations,
dual of S

total generalized nodal force at node i due to element n

total generalized nodal force matrix at node i due to
all elements incident upon node i

matrix defined by Eq (226)

= temperature change
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ui,vi

U =
gm

U! =

Ui,V. 1

U?
"l

W

w, s , w, n

W, X , W,y

W =
n

W k

(u,v) =vector of in-plane displacement

x and y components of displacement of node or point i

column supermatrix of nodal displacements

column supermatrix of nodal values of stress functions

dual of U

values of stress functions at node i

matrix of stress functions at node i, dual of

U'={ui-m vi_

matrix of displacements of a node q on a dislocation
(+ and - side)

z component of displacement

slope of plate at edge in s and n directions

slope of plate at edge in x and y directions

rotation of segment n, given by Eq (78)

geometric matrix defined by Eq (150)

5 rj = scalar defined by Eq (181)

x,y,z

xi,Y i

X
P

Z
0

O_X,O_y

oek

6u°,Sv°,Sw °

C.
1

E.

=

cartesian coordinates

coordinates of node or point i

distance from point p to node 1

scalar defined by Eq (216)

coefficients of thermal expansion

scalar defined by Eq (81)

components of the closing of a dislocation

axial strain in segment i

column matrix defined by Eq (95)
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O O

Cx, Cy

o

1

0o

Yx'Yy

_r
n

Cn

×.
1

X
_'i

w 1

f2
1

k

Sk

#

thermal strains in an edge beam

super-row i of the global stiffness matrix

_ generalized nodal force due to thermal0xi
0Yi effects, at node i, given by Eqs (21) and (22}

generalized nodal rotation matrix due to thermal
effects, dual of @.

angle defined by Fig. 11

Poisson's coefficients

potential energy of element n

angle from x-axis to outward normal n on boundary

matrix defined by Eq (116)

boundary curvature deformation at node i

matrix defined by Eq (116}

specified rotation of segment 1

bending problem quantity dual of w 1

symbol meaning "sum on all nodes k around the entire
closed boundary path"

matrix defined by Eq (229)

superscript denoting quantities associated with the
homogeneous bending solution

symbol meaning "is replaced by"
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APPENDIX 7

PROGRAM LISTINGS

A7-1 CDL PROGRAMS

ADD IBOUNDARY I t

EXECUTE IBDINIT'

REPEAT TABULAR

DATA CHECK SET 'IlO'

CONDITION ',lOt LT I

NEW COMMAND

OTHERWISE

CALL IMTRAN'

MOVE DOUBLE 'DIO' TO 'DI'

END CONDITION

DATA CHECK SET ,IlOI
CALL ,MTRAN,

MOVE DOUBLE 'D[O' TO 'D2,

EXECUTE tNBDASS'

END REPEAT TABULAR

FILE

REPLACE 'MTRAN' $ A CDL SUBROUTINE

CONDITION 'Ii0' EQ I

NO ID ALPHA 8 'DIO'

OR CONDITION 'I10' EQ 3

NO ID INTEGER '136'

EXECUTE 'MTRANS'

OTHERWISE

MESSAGE

MESSAGE

MESSAGE

MESSAGE

MESSAGE

MESSAGE

MESSAGE

MESSAGE

MESSAGE

INHIBIT

!

INCORRECT NAME SPECIFICATION'

!

NODE,ELEMENT, AND BOUNDARY NAMES MUST BE'

INTEGER OR ALPHANUMERIC'
l

REMAINDER OF CURRENT COMMAND WILL BE SCANNED'

BUT NO EXECUTION OF SUBROUTINES WILL OCCUR,'
I

END CONDITION

RETURN

FILE

ADD 'BOUNDARY C'

DATA CHECK SET 'II0'

CALL 'MTRAN'

MOVE DOUBLE 'DIO' TO 'DI'
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EXISTENCE 'DISPL' 'STRES' 'ELAST' 'EDGE' 'MIXED' fRIGID' SET 'II' REQUIR '

IGNORE tBEAM'

CONDITION 'Ii LE 2

EXISTENCE S' 'B' 'G' SET '12'

OR CONDITION I1' EQ 5

E_ISTENCF STR' 'BEND/I' 'BEND/2' SET '12'

OR CONDITION II' EQ 6

EXISTENCE FI I 'PIt 'FRt SET 'I2t

NEXT RECORD

ID 'Uli REAL iTli STANDARD O.

ID ,V1 i REAL tT2i STANDARD 0,

ID iRI, REAL ,T3t STANDARD O.

ID typi REAL iT4, STANDARD Oo

ID IMP, REAL iT5 i STANDARD O.

ID ,UP, REAL iT1 i STANDARD O,
ID iVp, REAL tT2i STANDARD O°

ID ,XP, REAL iT3, STANDARD O.
ID ,FXt REAL iT1, STANDARD O,

ID ,Fyt REAL iT2 t STANDARD O.
END CONDITION OPTIONAL

REPEAT TABULAR
DATA CHECK SET IIlO,

CONDITION ,I10, LT 1
NEW COMMAND

OTHERWISE

CALL 'MTRAN,

MOVE DOUBLE 'DIC' TO 'D2,

END CONDITION

MODIFIER 'TO'

DATA CHECK SET tIlOt

CALL tMTRAN,

MOVE DOUBLE tDIO' TO 'D3,

OTHERWISE

PRESET DOUBLE ,D3, EQUAL Oo

END MODIFIER

ID rUt REAL ,Tit STANDARD O.
ID ,V, REAL 'T2, STANDARD C.

ID ,KXX, REAL iT3, STANDARD O.
ID ,KXY, REAL ,T4, STANDARD O.

ID ,KYX, REAL ,T5, STANDARD O.

ID tKyY, REAL iT6, STANDARD C.

ID 'EPS, REAL ,T7, STANDARD O.
ID 'W' REAL iT8'

ID 'R' REAL iT9'

ID 'IN' REAL 'TIO'

ID ,Jr REAL 'TII'

ID 'G' REAL 'T12'

ID 'NX' REAL 'TI'

ID 'NY' REAL iT2'

ID 'EB' REAL 'T3'

ID 'IZ' RE_L iT4'

ID tNR' REAL 'T2'

ID tANG' REAL iT3'

IO 'CHI' REAL iT6'

ID tot REAL iT8'

STANDARD O°

STANDARD O,

STANDARD O°

STANDARD O,

STANDARD O,

STANDARD O°

STANDARD O°

STANDARD O,

STANDARD O,

STANDARD O,

STANDARD O,

STANDARD O,

STANDARD O,
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IO IMN t REAL tTBt STANDARD 0,

ID 'KZZ t REAL tTlO t STANDARD O,

ID tKSSt REAL IT11' STANDARD O,

EXECUTE tNBCCP'
END REPEAT TABULAR

FILE

ADD 'STABC' $ A CDL SUBROUTINE
DATA CHECK SET 'IlO'

CALL tMTRAN'

MOVE DOUBLE 'DIO' TO 'DI'
DATA CHECK SET 'I1C'

CALL tMTRAN'
MOVE DOUBLE 'DIO' TO tD2t

MODIFIER 'TO'
DATA CHECK SET t I10 t

CALL tMTRANt
MOVE DOUBLE '910' TO ,D3'

OTHERWISE

PRESET DOUBLE tD3t EQUAL O,

END MODIFIER

EXECUTE 'NSCCPl

RETURN

FILE

ADD 'SIMPLE S'

PRESET INTEGER 'If' EQUAL I

CALL 'STABC'

FIlE

ADD tIN-PLANE R t

PRESET INTEGER 'II' EQUAL 2

CALL ,STABC,

FILE

ADD 'NORMAL R t

PRESET INTEGER 1111 EQUAL 3

CALL ISTABC,

FILE

ADD ,CLAMPED E,

PRESET INTEGER '11' EQUAL 4

CALL tSTABC,

FILE

ADD 'FREE Et

PRESET INTEGER -'Ii' EQUAL 5
CALL tSTABC'

FIIE

ADD 'LINE L'
PRESET 'I4' EQUAL C

REPEAT TABULAR

DATA CHECK SET 'IlO'

CONDITION 'I10' LE 0

NFW COMMAND
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OTHERWISE
CALL 'MTRAN,

MOVE DOUBLE 'DIO' TO tO2,
END CONDITION

IGNORE 'FORt

ID ,Xt REAL *T1 t

ID 'Y' REAL 'T2'

EXECUTE tLINLOD'

END REPFAT TABULAR
FILE

REPLACE 'DISLOC'

PRESET 'I2' EQUAL 0

PRESET 'I#' EQUAL 0

ID tDU' REAL 'T1 t STANDARD O,

ID 'DV' REAL 'T2' STANDARD O,

L_ 'ROT' REAL iT3' STANDARD O,

EXECUTE 'DISLCP'

NEXT RECORD

MODIFIER 'PATH'

REPEAT

DATA CHECK SET '110'

CONDITION tit0' EQ -1
NEXT RECORD

NE_! COMMAND
OR CONDITION 'IlO" GE 0

CALL 'MTRAN'

INCREMENT '14'

EXECUTE 'DISLCP'

END CONDITION
END REPEAT

OTHERWISE

MESSAbE tyou FORGOT THE WORD -PATH-'

MESSAGE 'THE EFFECTS OF THE DISLOCATION WILL'

MESSAGE 'NOT BE INCLUDED IN THE PROBLEM'

kiESSA-GE 'BUT PROCESSING WILL CU_TiNUEo'

END MODIFIER

FILE

REPLACE 'GRAVITY L'

ID 'ANGLE-X' REAL 'TI' STANDARD O,

ID 'ANGLE-Z' REAL tT2' SIANDARD O,

EXECUTE 'GRVLOD'

FILE

ADD 'LPROC' $ A CDL SUBROUTINE

DATA CHECK SET 'IlO'

CALL 'MTRAN'

MOVE DOUBLE 'DIu' TO 'DI'

PRESET INTEGER '13' EQUAL 0

CALL 'XROUT t

CONDITION '12' EQ 1
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RETURN

EN.) CONDITION OPTIONAL

s_iOVE DOUBLE 'L_I0' TO 'D2'

CALL 'XRUUT

CONDITION ' 2' EQ l

RETURN

END CONDITION OPTIONAL

.'_OVE L)OU_LP- 'L)IO' TO 'D3 1

CALL 'XEROUT

CO_:OITION ' 12' EQ ].

RL! orb

END CONL)]TIu,'_ OPTIONAL

MOVE DOJmLE ,DI(I, fO 'O4'

CALL tXROUT

COI_DITIC!N ' 2' ff.O i

RETURN

r_LN_; CONDITIOi': OPIlONAL

_',_vE DOUBLE t[)lOt Tu IDSI
CALL tAmUUT

CONOI i ION t 2' _._ L

I:<E [URN

i:i<D CONDITION OPTIONAL

F_OvE DOUBLE t[)lC, I 10 'D6 t

CALL tXROOT

_-ONDITIU;,_ '12' Eu i

RF 1UR,X_
LND CONDITIOJ40P'IIONAL'

i_;OvE DOUi_LL: 'DIO' Tu tO7t

(:ALL 'XkUUT

_.Or_ulTIuh 'Iz' :_ .

RETUI4N

=,,_: (.ui,_L_LTiO;'_ OPTIOF'iAL
, ,_, r_ L_uUDLr ! L, IOI ]'L; I D8 t

CALL wXROU _ I

LONDI lION 'I2' EO 1
r_L i 'J R N

L_',i,: C (; :t L: I .T I O :': OPflUNAL

,",':rE ',JOUULE ",}10' TU tOgt

C.:-_L L t ,<I,O;JT t
Cu,':IJITIOi'_ '12' LL_ 1

r<F i L,r_,t,i

L:'.IU CUNuITIOm O,'_ i.;!IAL
Pi<L.bmi Im]'EGk--F< t i3o EE_u_,L i'_'

t-,r- i Ul'_i_

FILE

ALJ;_ 'AIx_;'UT' $ A CDL SUIt_ROU Ii#NE

I,NLI-:r2F'.;L,NT'i J '

DA] I_ CI-ILLi<.SLT _ 1 1'..'

CON[L;ITI.)_'J 'if,-' EQ 2
!:'[(i:bET ' I:," EQUAL ].

v;< Cui_ulTlul': _11_' EQ 0

P',<ZCE_ 'J2_ Lg,UAL 1

_. ; r-_r..K;,,'I S,-

k_
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PRESET '12' EQUAL 0

CALL 'MTRAN'

END CONDITION

RETURN

FILE

REPLACE ,BENDING PAR,

IGNORE ,SOL,

MODIFIER ,UNIFORM,

IO 'L' REAL IT1' REQUIRED

ID It' REAL 0T2' STANDARD 0.50

EXECUTE 'STDPSL'

OTmERWISE

REPEAT TABULAR _END'

HODIFIER 'NO' $ MODIFIER LEVEL IS 2

PRESET INTEGER '11' EQUAL 0

CALL 'LPROC'

ID 'KX' REAL 'TI' STANDARD O,

ID 'KY' REAL iT2' STANDARD O,

EXECUTE 'PARTIC I

OR MODIFIER IEL'

PRESET ImTEGER Ill' EQUAL 1

CALL 'LPROC'

ID 'KX' REAL 'TI' STANDARD 0.

ID 'KY' REAL 'T2' STANDARD 0.

EX±CUTE 'PARTIC'

OTmERWISE

MESSAGE ' '

MESSAGE , PERHAPS YOU FORGOT THE END STATEi._ENT'

MESSAGE ,REMAINING CUHMANDS WILL BE SCANNED BUT NO PROBLEr, i

_"ILSSAUE 'EXECUTION WILL OCCUR'

I_ESSAGE ' '

INHIBIT

INE>:T RECORD

NE_'I COMHAND

END _4ODIFIER

END REPEAT TABULAR

END MODIFIER

FILE
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INPUT PHASE PROGRAMS (ICETRAN AND FORTRAN IV)

C
C

C

C

C
C

C

C

SUBROUTINE BDINIT

AUTHOR- D, A, NAGY

LANGUAGE- ICETRAN

THIS SUBROUTINE INITIALIZES THE ARRAY OF BOUNDAkY NAMES_

BDIDt THE POINTER ARRAY FOR BOUNDARY CO_qDITIONS_ BDCOND_

AND THE PROBLEM TYPE INDICATOR IPROB.

COM_ION FILLI(182)tlSCANgFILL2(L40)tlDtFILL3(8#)._IPROBIIBCON

COMMON BDID(P)_ BDCOND(P)
DYNAMIC ARRAY BDID{D).BDCOND

IBCON:O

DEFINE BDID_I,DOUBLEDSTEP=I
DEFINE BDCOND,1,POINTER,STEP=I

GO TU (7_7,7,7,7,7,7_7,7,1,3_b)pID

IPROB:O

RETURN

IPROB=-I

RETURN

IPROEi=2

RETURN

IF ID IS NOT i0_ii, OR 12, THE COMMAND °BOUNDARY INCI-

DENCESt' WHICH CALLED THIS SUBROUTINE, IS INVALID AND

THE APPRUHNIATE ENI-,UI-< MLSbA(ar- 15 PI<INTE. D.

WRITE{6t8)

WRITE(6og)

ISCAN:2

RETURN
FURW, AT(51H THIS COMNAND VALID ONLY FOR DUAL PLATE STRETCHING,)

FORMAT(51H DUAL PLATE bLNL) ING_ AND DUAL PLATE GENEi_AL--EI<RUR.)

END
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7

9

8

41,

41

C

C

C

C

C

DLIM- JT il)(NTEMP )

!^/!RITE (6_I03) DUM

GO TO 70

IF(M-4) 8,o,70

_4=1

IF(JTYP (ELTOP ( I ,f'i+l) ) ) 40,40,41

DUM=JT I O( ELTOP ( I ,M+I ) )
WRITE (6,100) DUM

GO TC 7G

INDIC--JTYP(ELTOP(I_M+I))

GO TO (12913,13,70,70,70,70,12,12,13,13,70_70,70P70)_INDIC

J=I+l

DO B(_ I=J,NBXTEL

DO 3.D M=2_4

IF(ELTOP(I,M)-NTEMP) 30, T,30

CONT INUE

ERROR IF AT ANY POINT THE CHAIN IS BROKEN BY SOME NODE

THAT WAS NOT SPECIFIED AS A BOUNDARY NODE WHEN IT

Si40ULD HAVE BEEN.

].3

190

51

5?

52

54

55

62

63

(..,

8 4

_3

52
85

86

87

8v

DUM=JTID(NTEMP)

WRITE (6,102) DUM
GO TO 73

NFIRST=ELTOP(I,M+I)

J=l+l

DO 50 IB:J,NBXTEL

DO 50 MB:2,_

I F (ELTOP (IB,MB)-NTEMP) 50,51_50

CON T I _IUE

NTEMP=NFIRST

GO TO 31

IF(_B-4) 52,33,70

MR=I

IF(JTYP(EL_OPtIB,MB+I))) 5_,54,55

I=IB

M=_'iB

GO TO 40

INDIC=JTYP(ELTOP(IB_MB+I))

GO TO (62,63,63,70,70,70,70,62t62,63,63970_70,TC'tTO)_INDIC

J=IB+I

GO TO 190

N2ND=ELTOP(IB,MB+I))

GO TO (80_81,82),M

IF(ELTOP(I,B)-N2ND) 83,84o83

NTEMP=NFIRST

GO TO 31

GO TO (85,_6p_7),MB

IF(ELTOP(It4)-N2ND) _3,84,83

IF(ELTOP(I,2)-N2ND) 83,8_,83

IF(ELTOP(IB,3)-NFIRST) 88,89,88

IF(ELTOP(IB,4)-NFIRST) 88,89,88

IF(ELTOP(IG92)-NFIRST) 88_89,88

NTE_O=NZND

GO TO Bl
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C

C
C

C
C

C
C

C

C

C

C

C

C

1

C

C

C

,

7

C

C

C

C
C

q

5

4.

bU_ROLJTI NE NBI)ASS

AUTHOR- b.A. NAGY
L A N (:,UA"_ _- ICETRAN

THIS 3Uigr£OUTINE ACIS ON TIdE TABULAR REPEAT._ UF iHL ,L:,UUr, IDANY

I_',iC[::)ENCES _ COMMANi)9 INCRE;viE._._TING THE L,..)NNECTIVITY COUNTER

IbCGN AND Cui',,'ST_<UCT1Nb TriE CrlJ-,,il',l oF isOUr,,Ii.)ARY NOg, ES, Ii,_

O_4()FI_ AROUNO THE i:_UUNDANY iN THE +S DILiECTION,

I-HIS SUP::,P_ULJ]-iNL ASbUMES TI-iA[ P..,O P_LLNENT TuUCMES ;,Iur<b_ ]MAN Q_,_L

CLOSE) f'L:,UNDAi_.Y CURVE,

COMMON FILLI(72) ,DII, D2,FILL2(].06),ISCAN,FILL3(TU) ,dl IO(P) ,I._LJP'_,,

CO/I,,:Oi',! JEX]'N,JTYP(P) ,FILL4-(gb),ELTOP(i:') ,FILL.b(16},i'_:XTEL,FiLLO(30)

COVMr",f'.l IBC(]N, _F',]D(p), BnCO_,II'_(P)

,_)():JP,L!: !-)RI:CISION DI,I)2,i:.)LIM
[bY_,'Ai,tIC ARb_I'.Y f:'.,[b ]. r) ( !_ ) ,i-_(.CL.,r4t),JTYP,J I ID(D) ,[.-LiOP( I )

N = ,,
L3LJi P ( ] d (. Oi",l ) =l) 1

DL. FI?_L DOCONu(IbCON),IO,P'JII_TF-.i:_,STLP=IO

LOCATE NOi)E NUMBER OF FIRST NODE

D() I ]=I,JEXTN

If (LC_t_L._(D2,JTIO(I))) 1,2,1
C () f,lT I _,!:.Ij i_:

FRROR iF THF ['4OD_: iNA,v, Ll) L;Y i)2

L)EF I F.!ED.

WAS NOT PREVICUSLY

h[_ ITE(6,10::)) D2

ISCAN= 2

RETURM

IF(JTYP(1)-3) 3,L_,5

-ERROI-, IF THE NODE i'iAM,'::D BY D2 IS NOT ACTUALLY Oi4 A

BUUr4DARY (SPECIFIED P,Y t;OUND,-,,FIY OR L_, IN ,',,ODE COuI-::IDINATLS

COM_.'IAK!I_ ) •

wR ITE(69 i,-',I) !')2

G(_, TO 7',_

IF(JTYP(I)-ll) 3,4,4

NTLI_ F= ]

N = N + 1

DEFIF_E &DCOND(IbCON,N) ,5,FULL,SIEP=5

oESTROY Bi)CONI)(IBCON,N)
SDCONtb( IBCC)N,N,1)=NTEMP

LOCATE NEXT NODE ALONG BOUNDARY IN +S DIRECTION

2?

DO 20 I=I,NBXTEL

DO 2C W:2,4
IF(ELTOP(I,M)-NTEMP) 20,7,20

CONTI_'UE
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L

k_

k.

C

C

c

.._Ur-)t4OuTINr iqT,_AmS

AUrHuR- i). A. NAGY

L/_ NC, U AG':- FORTP<AN IV

imi5 Sobi-<uUTtNE TkANSFORP;S Ai.4 Im-r.hGE,._ p4divimrr< OF

FOU;: ,)IGITS Fi40,,l INTEG£R FORr.iAT T_ ALi-,_A,_dP,r_._IC

LLFT-AF)JJ._'iED if'4 "fm_F._ 8-CrlARACTEi-' Fi6_Lu.

U i; T u

I (>)=]_ 7'_,;41_24

L) LI__B_iv [;\!L FI.<ST PI_I[ uF II-iL r4bm:.,Lr<

L),.) i j= i _-

I ':I',= I _6/ ( ( i0"_'- ( 5-J ) ) /!u )

ir(IFb) l,l,a

_.,1_ r_-._Ci>iL CUiJ_. rum Fil-,bl D. Ibl t- f_.} Ll::r [mObl CHAI_:ACTL_

PC',,I i'IC;i\i OF I (1).

I ( ] ) =-zb8 _.._ 5-:_0+ ( 4**2_,:+ ) -;4-I t:':L.)

K:J .

].r (JI&) Z+_5_3

i'B

3

[ ,_

l)_g IL_ r4= 1 _K,K,

: "_6= I "_6-I FD* I,'** ( 5-K ) I.i0

I Fn= I _6/( (] r)* _ (_-K. } )/10)

I (1)=1(1)+(2"_'-(8"(_-i'4))*15)/16+(2**(_,'-(q.-N})_"IFD;/(2**8)

K = r."+ ]

GC> TO 15

N = u

IF(N-3) 2_,21,2i

ADu i_LAI'4r.. CHARACTEr\S r_ :<E,,i_I,._Ii_b Pb_ITI_J,,,5 UF i(_)

NOT FILLEu L_Y u_GII COUE_,

]._

M = !,,!+ ].

t( 1.)=I(1)+2"*( (z+-N)*,_t)/4

"[ I;(Ai4._:,F Ei< *-_FSuLT i ,'IG ALPriAi4UMEi4 I C _EFRESEmTATIUN uF THE
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(_

C

hUMi_E_R TO VAF(IABLE DIO,

D J_,-;= DNAIvlE

RETURN

E _,_I)
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%

L

£

bU,_h_U,UT ii'4E i4bCCP

C

L

L

( =

J.

%

L.

t

1]

71

I,

J._ _.,'

I:

L _,,N_!JA L-.,:.--!LnTI_AN

_JL;UoLr- P!_c_Llbiui_ L.,19 U2_ U3
:_ T :F ,X_5 I !" _,1 i.',k,T .':_( 1 4 )

C',.,.':,_._ !iriS9 iF ILL(-_L),O_I-_.tiFILLIZ4),UI_D/,C;._F.'LLiI_b)

C,'._, i():i '_-,h(_.../,,_',;(p)

_._.[/_.,..i,..n e,_,o,,_,_;-,,Y_U,,;ciE.i_,,r_6ii i_.;',o Or THE lauuk(b)

i,_ T,-,.: C,-,_I,,, _'_t., i_E TY_ZS uF o_(J,_oAKY CU,'_U.[[I,.JI',ig

!_LF_ ,I,_-_ ':,li!J A_: [L.d. CUl£P, ti,.iT P()I, TIOtu.

O'_T.'_(!)=O.
O_TA (2 )=Oo

I_F=:_r)_ ONO(I,JCoz)+I.
I-FF=!-_.F;COND( I _JC_4)+I,

i L= :_:,CL),',_!) ( I , <,C _ 2 ) +1,

i I L=_OCL, N D ( I , K'C, 5 ) +1 •
I _ ( l'_RO'_> ) 1,2,Z

',},,_ 4 (v+/)=',;A.TA(!4+9)

._;,-,#_,,Cr. 1o AVvr_UVlxiATF ,_uUTI,'_E ro_x .Slu,._Iu_G SPECIFIEU

C,>,,b, iTI_ V;,LL..IIT_ ucPhl_DII,iG UN TriP_ VALUL ur ll, THe

t-,()L :'_;AI,'y (Ot,'l)I]'i:)N TYP{-F. IN[;ICL_','O_-_ SFT bY C!,'L,

UGUNDAKY

,%; TO (iC_2i.,3_.,40,50,6C))_I1

_.,_I.:,F;L,"\CI-;.I,:r.IT P'_.C.Ob POUi-INE

IF (IPRL._) ll,lz_13

D'ATA(2)=I,

_)n 1 A ( ? ) =Dn I A( 3 ) /CFLEN
t _n.r A ( 4 ) =OA [ A ( 4 ) /CF ^NG

i!-(KC} 7C _71;,71

<<=JC

G<) TO 72

C _I_L. _,_STP_V (I _JC ,KC-I _/',DATA _4 )

L_LL l",i,.hl[:,_V(I _I,.C,K,.C,b_L)AIA,_,)
I{ I.E,I:t: BOCONU

[)_) 150 I=I,]4

I)/,TA( I )=Oo

R:-T U P',!

DATA(Z)=].,

I)ATA(3)=hAIA(I_)ILFLLi'4

i',_T,_(_-_):OA 1A (4 )ICFLEN
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7 "_

4

75

1 1

Cj_

1 _-;

14

77

76

7 (_

p_ ("

21

.a.4

P,].

25
24
2_,_

27

22

82

28
29
15

TF(KC) 73_73t74
r-.L-OC
G,) TO 75
C_LL NSTBV (I,JC,KC-I ,4, DATAIO

CALL .\!STRV( ItK.C,,k.C,4,DATA,OI

N=JC
N"D E= r-:'.OCO_O( I ,,_',1 )
JTLOD (NODE, 1,7 )=DATA (3 )

JTLOI) (NODE, i, U }=DATA (4)

IF(KC-N) Q8,o9,98
N=N+I
IF'(BDCOND(I,'_,I) )
N=I
GO TO

GO TO
OAT'
r)ATA
0 a.T
i) ,_T A
OAT_
DAI A
IF(

i1 --
_\. C --

GO
CAL
CaL
GO

I00, I00, i01

1C 1
( ] _,]4, 1_ ) ,I_

] )=lll,

2)=i,

3)=DATA(3) /CFLF_N

&')=DATA( 4)/<FLEN

! . ) =D_TA ( i0 )/CFLEN
11 I =DATA / 11 )/CFANG

KC) 76,77,76

JC
TO 78

L NSTBV(IiJC,KC-I,II,DATA,O}

L NST_V(I,ICC,KC,IO,DATA,O)

TO (I02',Q<),].02),12

STRESS m,C, iS ROUTIr,!F

IF(
OAT

IE=
OAT

Dt_T

IF(
DAT

GO
CAL
GO
'- L,._A
GO
DAT
t.)i_T
CAL
GO
DAT
DAT
OAT
IF(
CAL
IF(
CAL

GO
CAL

IPPOB) 21,22,23
A(2)=2,

A(3)=DATA(3)*CFLE_,!/CFWT
A(4)=DATA(4)/CFWT
KC) _9,_3,_I

A(IE)
TO 24

L NST
TO (2

L NST

TO (2

A(IE-

A(2)=

L NST
TO 99

All) =
A(3)=

_(4)=

KC) 2
L NST
IL-1)
L NST
TO (1
L NST

_ f") t I

BV(I,JC+iiKC-I,16,DATA,4)
5,24,25,25,25,24,25),ITL

BV(I,KC,KC,IE-I,DATA,4)

7,26i27,27,27,26,27),ITF
i)=0.

O.

BV(IIJC,JC,IE,DATAI4}

1

DATA(3)*CFLEN/CFWT
DATA(4)I_CFLEN/CFWT
9,29,82
BV(I,JC+I,KC-1,4,DATA,4)

28,28,29
BV(I,KCiKC,4,DATA,4)

6,17,16,16,16,17_16,1_,16),IFF
BV(IIJCIJC,4iDATA,&)
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I/

.2.-_

18

19

C

C

C

37

IF(IPROm) '.)9,99,17

GO TO (22,18_22),I2
DATA(3)=O.

DATA(_)=O.

D&TA(O)=P,

_AT_(I( )=DATA(IO)*CFLFN/CFWT

IE=II
GO TO 84

IF(12-2) 99,09,18

EL&STIC bOUNDARY ROUTINE

3:

f,]

.,%

(]

'7 !

IF (IPROt;)

I E_,'D = 1

D \Ta ( "_ =9
D.AT_ (4 =O

O(" 160 I=

_'^T:'. ( I =O

DAT& ( ! ) =

D _.TA ( 1 ) :

DATA ( ]2 ) :

b A TA ( 13 ) :

GO 70 55

I L l'ilJ = _.

G*'._ TC: 10i

{" A.TA ( 2 ):D

D A TA (4 ) : O

.;Ar,',, ( 5 )=?,

I)ATA ( b ) : i.',

I (I ;!G=4

u/TA(1)=I

U,_;_(2):I

iF (r<C) :_9

I<C:JC

G{) TO 'J1

31,32,32

,-A.T _' ( "_ ) /CFLFN

AT?,.( 4. ) / CF LEF,':

5,9

ATA( ! )',"CFLEN*CFLEN/CF'.,.'T

'.-;AT.._ ( LO ) /CFLEN

DAT# ( l1 ) /CFANG

DATA ( 12 ) *CF L[-N*CFL#N/C'TWT

DATA ( 13 ) e"CFANG/CFWT

t, TA( 2 ) /CFLE!:

ATA( 4 ) /(IF ,', .\!(:,

AT _ ( 5 ) * C F L---X','-(F L:L r'.'./( Ft.: 1

AT/-, ( 6 ) *CF,.^,NC/CF"'T

1

1
_C.'

CALL _,;bl i_'.,'( I,JC,,,_.-.L,I6ND,_-,T,'-"..D IC_.[.,_)

CALL ;\Ibl [_,' ( I , ikL t ,%C , I t.f',; 0 , L;AT,',, J.Ci_i',IG )

GO TO 9'9

EL)GE J,[XA,I ROUTINL

.4

;r _f

]42

I i ( IPro,u-- ) 4.1,45,4Z

I h;'4O = 1_+
N:I_

[)t,l& ( "_ ) : [;A i A( 2
i)t, rA (4)=DATA( 4

DATA(5)=DAi A(5

DATA(6]=DAI A( 6

,,,_: _(,'4)=DATA(N

',',:, T _ (N4-1) :[',-tTA

;'&l ,_('+/) =;'A.T A

L" \T,:- ( _'_+4-.. ) ="_.,,- "̂A,

* t F L ;! N ,' C F '.JT

*CFLEI'4/CFw I

*CFLEN'_ CI-LE:',I/CF WT

/ ( CFLE.N-X'*4. )

*CFLI i'4/CFW T

N+I )/CF",,'T
N+Z}/(CFLEN**4. )

;44-3 )/(CFLE,' x-r,-,_. )

N+4 ) _,-Ck 1_E N,"-C F L',ih/(_F',,; T
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_3

_+I

C
C

C

5,_

51

L_b

GO TO 35

N---3

GO TO 163

MIXED BOUNDARY CONDITIONS RuuTI_',:i

GO TO (51,52,53),I2

DATA ( 1 ) = 5 ,
DATA ( 3 ) =DATA( 3 )/CFLEN

DATA (4) =DATA(4) _CFLEN/CF'AT

DATA ( 5 ) =DA1 A( 5 )/CFANG

IF(KC) 85t85,86

KC=JC

IL=IFF

f'_-)_. TO 55

_u CALL R.bT B'd ( I iJC+I iKC-i, 5 ,OATA i_+)

IF{ IFF-2) 54p55i54

T _ V54 CALL N'6 ._o,(i,JC,JC,5,DAT.&,4)

b_ GO TO (56,S"?,56956156,b6_L,&,'99,DL),iL

bu CALL N""" ( I t i..C,

GO TO <99

_2 DATA(2)=5,

IF(I'""OLJ,),-,,. 58,5_,b _..

.b ,:; N -- __
iZ=_

l'-,_+ ;.PAT A ( N ) - _,_l ,-, ( ,_ ) / CFL:-bl

DATA(:q't'L):DATA(i'4+I) _CFL_iI/C[ ,', i"

I F ( ',<<.) c, 7 tlt_ ? I d_

_d," '< C = J C

GO TO ':_Z
#- ,', I ',1 "c _.,_L ,.,STBV(IiJCiI<C-ltIE,DATA,z+)

..i CALL i'_, -._V ( i i I<C i KC, I r- 1 ,,_>ATA i _)

GO TC 97

J : N = I u

I_=ll

G:J i U ib4

•, , • ^ ../- #_<5_ ,.."_ I (2)=6,

I ;- ( I i-'[<u_; ) :_,b,6

IL=4

/;=3

lu5 D A.T A ( h ) = D A l A ( N ) "',-CFL EN / Cr: .,','T

DATA (N+I) =OAI-A ( N+I ) /Ci-- .......
IF (',<C) 'JSi"J4,:,'3

'7 '-_ DATA( I L ) "0,

GO TO 7
?5 CALL LISFSV(I,JC+L,I¢C-I,IL,DA_^,_), ,_

GO TO Idt7,8,/_17,7i8), ITL
.. L)MI ,_'_ )O .... L TSVtIt , _,

, ib (IT;-:-;) C.blb, ot':,'

'; O/',T A ( I_-I ):t',

,;:-. L[,::.k L /<bi LJiV'( I t Jt t J C _ i L_, L,/-, [ i:. __ )

bJ TO _'_'
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5

RI

6L

51

Lr

IL_ 6

IZ=II

N=IC

GO TO 165

GID P.OU_,'DAP, Y ROUTINE

DATA( 6 ) =DATA( 6 ) / C-L,-N
DATA('7) .... r, 7- ,..,_, ,.-,( ) / ( C F L EN"" C F','.'T )

DATA( 8 ) :DATA( _ ) *CFLEN

GO _'+,., (51pC21166) tI2
I _-_:-.t

D.'..T ,:, ( 3 ) -r', .,- /C LFP '.. --_.,_.iA(-_) F _.

U,LTA ( 4 ) -_,.,,--,,,-,'",, r ,', ( z,..) / C F L r:_h

'" ".T .... A N G- D,,-,, (,- :..( S ) A )/CF

I',:(KC) "5,75976
:QC:J'- ' ''+,,. "i" ,,i.

IL=IE-1

GO TO 54
CALL NST2>v( I ti,,C,:;,C, ![.L,b',",iAt:_)
CALL ;",b"iL;V(IidC,:,,C-lltm+lt_,_l,,-,_z+)

GL" TO 9?

I±:L_

DATA (3) :DATA( 2 )/Ci: LL_:;

SATA (4) :DA] A(4)/LFLLI:.

DATA (5 } =DAT A( 5 )/CFL_I';
GO TO 6b

I "L:S

DA i A ( 2; ) =DA.A( 3 ) / C F',.;T

2 A 1 ,.:,,(,4) =CAT/:,.( "_ ) /CF_.!T
GL, "" .....I _., ,.L _.J f



C

C

C

C

C

C

C

C

SUL'.,i<OuT I N E GETI',;OS (D]. ,i]2 ,O3, i , J, K,JC ,K£ )

AUFII()R-

L#.NC, UAO_-

D. A. BIAGY
ICETI_AN

THIS SUqROUTINF._ ORTAIJ_o..... TttE tSOUNOAI<Y i',,Ui<,:sER A.;,;D Pc, SI-

TIONS OF THE FIRST (,_I..!D LAST) NUDE OF TPIE SPECIFIEi;

BOUNDARY PORTION, GIVE',! THE 8()UNi",aRY NAIqE(D1), AhD NODI

SAMES (i_2 AND D3).

L)()df..DLI_- PRECISION D1, D2, D3

CO;'.;:ICi',_ FILLI( 182),ISCAf'_,FILLZ(TS),JTIL)(P),DLJi',,JEXI-,_,FILL3(i491

C,)ki>,ON IBCON, BDID(P), BDCOi,iDIF')

DY:',,_',:','IIC ARRAY 5DI[,',([;), JTID(D), l-DCOii[-_

OO ! I=].,16;CON

! r- ( LC-_i.. E", >L,_(DI, sOIb(1))) 1,2,1

C C,*','T IIx!U .-'£_

EF<-_OR--BOUi',IDARY NOT PREVIOUSLY DEFIhED

c;(.
,:.,'R! T- (6, !.,'><') D1

ISCAN=2

GO TO 12

I !NOW EQUALS BOUNDARY KUZiz)Ei._

DO 3 J=!,JEXTr,,I

IF (LCDBLE (D2,JT Ib (J)) ) 3,z+,Z

C_)NT INUE

E" _iO{hr) ,',fhi'h_ _',! _,r--....... -,- ........ -1 C'T PI-._\/ICJ,.;SLY DEFI?'ED

WRITE(6,!CI) D3

GO TO 90

J lqOw EQUALS NUi,!BER OF NODE-1

q-

16

DO 5 K=I,JEXTN

IF(LCDISLE(D3, JTID(K)) ) 5,6,5

CONTINUE

IF(D%) ]6,16,15

<=_

GO TO 6

ERROR--NODE-2 blOT PREVIOUSLY DEFINED

'VRITE(6,1nl) D9
GO TO 90

K NOW EQUALS NUMBER OF NODE-2

JC=I

FJ=J

IF (BrD,COND (I ,JC, 1 )-FJ ) 7,8,7

JC=JC+I
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C
C

C

1'

C
C

C

1 ,_

17

I?

1L

C

L

C

14

1,,2

I,-': ( BDCOND ( I , JC, 1 ) ) I0,i0,9

ERRO6:--NODE-1 NOT ON GIVEN

WRITE(6,102) D2, DI

GO TO 90

JC NOW EQUALS POSIGION

B.OUNDARY

OF NODE-I iN CHAIN

IF(K) 17,18,17

KC=O

G r; T fT' 12

KC=!

FK=K

IF (BDCOND ( I ,KC, I)-FK) ii,12_i].

KC=<C+L

IF ([_DCOND ( I ,liC, 1 ) ) 14,14,13

,.):f r::q c _,:-- i'qOP E- 2 r'.J,."T " ': G I V E ;',I

D2=D!
,,- ..,,J,' T') i0

L:-,. L ?,:)IO

REI. ?''-E,.:_ JTID

R-I_E _ _-i- pr',cr',,,iR.,

R[-:T['_"

F...'.r'AT(I':._; 9©UN,DARY

F,_,_ AT(6k: LODE

FGI.:b,r,,T ( 6H F'..:OD!:

E L i._

,A8,3 2,'-_

_/'.. ':-], 2 2 H _',:OT

,AB, I8',q ,L;CT

bO UN [:'A J<Y

NOT PRgVIUUSLY ,')L:FI_'4_ c-,r ,_.

P;-LEVIOUSLY DEFII",ED--EI<RC;,.i, )

,,,, F_, _,/ ", ,:y
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C
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C

C

C

C

C

5

1

2

4

3

SUBROUTINE NSTBV(IBPJP,KPDIENDtARRAYoICHNG)

AUTHOR-

LANGUAGE-
D, Ao NAGY

ICETRAN

THiS SUBROUTINE STORE5 THE FIRST IEND VALUES OF THE

DIMENSIONED ARRAY tARRAYO INTO THE DYNAHIC ARRAY

Bocur_D FuR BUUNDARY NUMBER=I_4 FRO_',_ NuDE POSITIuh JP

TO NODE POSITION KP, IT ALSO ADDS TO THE CODE IN

ARRAY JTYP TO INDICATE THAT THE UOUNDARY CONDITION

IS OR IS NOT ACTUALLY FULL DISPLACEMENT RESTRAIIiT

AT THE GIVEN NODE, THIS IS DONE bY ADDING THE

INTEGER # TO JTYP IF THE BOUNDARY CuNDITIOi,4 IS

NOT THE DISPLACEMENT TYPE (FON THE STRETCHING Pi£OBLEr"_)t

OR ADDING O IF IT IS, THE 4 OR O IS PASSED TO SU_-

ROUTINE NSTgV THROUGH THE VARIABLE ICHNG,

COI,I_.'!,)P_ FILLI(265)tJTYP(P)_FILL2.(150)t bDCOND(P)

DYNAMIC ARRAY UDCONDP JTYP

IN=JP

DO 10 I=IpIEND

I=(ARRAY(I)) lifO91

3DCOND(IB_INoI+I)=ARR.AY(I)

COr4TINUE

INODE:BDCOND(IBtIN,1)
JTYP(INODE)=JTYP(INODE)÷ICHNG

IF(IN-KP) 2,3_2

IN=IN+I

IF(BDCOND(IBtlNtl)) 5,4,5

IN=I

_ TO 5

RELEASE BDCOi'4D

RELEASE JTYP

RETURN

END
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C

C

C

C

C

C

C

C

C

SUBROUTINE N5CCP

AUTHOR-

LANGUAGE-

D, A, NAGY

FORTRAN IV

THIS SUBROUTINE PROCESSES THE STANDARD SUPPORT COMMANDS,

IT BRANCHES TO THE APPROPRIATE ROUTINE ON THE

INDICATOR 11, SETS THE INDICATORS 11 AND 12 FOR

THE APPROPRIATE BOUNDARY CONDITION TYPES IMPLIED

BY THE USER, AND CALLS NBCCP,
COMMON QQDUB(2), ICOM, IERRORo ICOMLp QQCOM(75)

COMMON II,12_FILLI(32),DATA(II)_FILL2(368)PIPROB

DO I I=l,ll

i DATA(1)=Oo

GO TO (10,20,30,40,50),I1

10 IF(IPROB) 11,12_13

11 11=5

12=2

CALL NBCCP
RETURN

13 II=5

12=2
CALL NBCCP

12=I

12 II=l
CALL NBCCP

RETURN

20 IF(IPROB) Ii,22,23

23 II=5

12=2
CALL NBCCP

12=I

22 11=2
CALL NBCCP

RETURN

30 IF(IPROB) 31_12,32
31 11=2

CALL NBCCP

RETURN
32 11=2

12=2

CALL NBCCP

12=I

GO TO 12

40 11=I

12=3

CALL NBCCP
RETURN

50 II=2

12=3

CALL NBCCP

RETURN

END
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C
C
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113

SUBROUTINE LINLOD

AUTHOR- D. A. NAGY
LANGUAGE- ICETRAN

THIS SUBROUTINE COMPUTES THE EQUIVALENT CONCENTRATED

NODAL LOADS (X AND Y COMPONENTS ONLY) FROM THE

SPECIFIED LINE LOAD INTENSITIES.

2
3
5

18
20

17

19

13

121
120

4
i0

9

DOUBLE PRECISION D2

COMMON II_ILL,NPR,I#_FILLI(32}gT1,T29X(2}oY(2)pFXPRpFYPR

COMMON FILLG(30),D2,FILL2(lO6),ISCANgFILL3(52)_CFLEN,CFWT

COMMON FILL4(16),LEXTN,FILL5(T),JTID(P),DUM,JEXTN,FILL7(5)

COi_MON JTXYZ(P),JTLOD(P),FILL8(91),ELTOP{P)pFILL9(16)tNBXTEL

DYNAMIC ARRAY JTXYZ(R),JTID(D),ELTOP(1),JTLOD(R)
ILL:O

II=IDEF(JUNK,JUNKgJUNK,JTLOD)

IF(II} 113,14,113

DEFINE JTLODolO,POINTER,STEP=IO

DO 1 I=I,JEXTN

IF(LCDBLE(D2,JTID(1))} 1,2,1
CONTINUE

ERROR IF A NODE ON THE PATH OF THE LINE LOAD WAS NOT

PREVIOUSLY DEFINED.

WRITE(6,100) D2

ISCAN:2

ILL:I

GO TO 120

IF(14} 393,4

IF(ILL} 595,20

II=IDEF(JUNK,JUNKgJUNK,JTLOD,I)

IF(II} 17918917
DEFINE JTLOD(1),5,POINTER,STEP=5

DEFINE JTLOD(IiLEXTN),I2,FULL

GO TO 19
II=IDEF(JUNKoJUNKoJUNK,JTLOD,I_LEXTN)

IF(II) 19,20919

X(1)=JTXYZ(I,I)
Y(1)=JTXYZ(I92}

FXPR=TI*CFLEN/CFWT

FYPR=T2*CFLEN/CFWT

NPR=I

I4=1

RELEASE JTXYZ

RELEASE JTLOD
RELEASE ELTOP
RELEASE JTID
RETURN

N=I

DO 9 JE=NgNBXTEL

DO 9 K=294

IF(ELTOP(JEgK)-I) 9o8_9

CONTINUE
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C
C
C
C

ERROR IF THE LINE LOAD CUTS ACROSS AN ELEMENT AT ANY
POINT--IT MUST COINCIDE WITH ELEMENT EDGES AT ALL TIMES.

8

11

12

22

21

16

15

i00

i01

WRITE(6tl01) D2

ISCAN=2

ILL=I

GO TO 121

DO ii L=2_4

IF(ELTOP(JEtL)-NPR) 11912oli

CONTINUE

N=JE+I
GO TO I0
X(2)=JTXYZ(Itl)

Y(2i=JTXYZ(I,2)
FLNGTH:((X(1)-X(2))**2o+(Y(1)-Y(2))_2.)_,5

RXP=FLNGTH/6o_(2._FXPR+TI_CFLEN/CFWT)

Ryp=FLNGTH/6._(2._FYPR+T2wCFLEN/CFWT)

RXC=FLNGTH/6._(2o_TI_CFLEN/CFWT+FXPR)

RYC=FLNGTH/6._(2._T2_CFLEN/CFWT+FYPR)

II=IOEF(JUNKtJUNKIJUNK,JTLOD,I)

IF(If) 21o22t21
DEFINE JTLOD(1),59POINTERgSTEP=5

GO TO 16
II=IDEF(JUNK,JUNKoJUNKtJTLODIItLEXTN)

IF(II) 15t16115
DEFINE JTLOD(I_LEXTN),121FULL

JTLOD(NPR_LEXTN,1)=JTLOD(NPRoLEXTN91)+RXP

JTLOD(NPRoLEXTN,2)=JTLOD(NPRgLEXTNI2)+RYP

JTLOD(IILEXTN,I)=JTLOD(19LEXTNtl)+RXC
JTLOD(IILEXTN,2)=JTLOD(I_LEXTNo2)+RYC

X(1)=X(2)

Y(I}=Y(2)
GO TO 13

FORMAT(6H NODE tA8,32H NOT
0FORMAT(6H NODE _A8,55H NOT
lENT--ERROR.)

END

PREVIOUSLY DEFINED--ERROR.)

CONNECTED TO PREVIOUS NODE BY ANY ELEM
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3
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SUBROUTINE GRVLOD

AUTHOR- De A. NAGY
LANGUAGE- ICETRAN

THIS SUBROUTINE COMPUTES THE GRAVITY LOAD (X AND

Y COMPONENTS ONLY) ON EACH ELEMENT, DIVIDES IT INTO

THIRDS, AND ADDS THE RESULTING CONTRIBUTION

TO THE NODAL LOADS ARRAY JTLOD,

11
C
C

DIMENSION X(3), Y(3), N(3)

COMMON FILLI(36),TI,T2,FILL2(144},ISCAN,FILL3(54)_CFANGtFILL10(151

COMMON LEXTNtFILL4(16),JTXYZ(P)tJTLOD(P)oFILLS(85),ELID(P)

COMMON FILL6(2),ELPROP(P),ELTOP(P),FILL7(16),NBXTEL,FILL8(6)

COMMON ELSTDS,FILLQ(22),IPROB

DOUBLE PRECISION DUN

DYNAMIC ARRAY ELTOP,ELPROP,JTXYZ(R),JTLOD(R),ELID(D)

DEFINE JTLOD,JEXTN,POINTER
DO 200 I=I,JEXTN

DEFINE JTLOD(IIPLEXTN,POINTERtSTEP=5

DEFINE JTLOD(I,LEXTN),I2,FULL

IF(IPROB) 1,2,3

IF THE PROBLEM IS ONLY PLATE BENDING, A MESSAGE IS

PRINTED AND THE SUBROUTINE IS NOT EXECUTED ANY FURTHER,

WRITE(6tlO0}

WRITE(69104)
WRITE(6,101)

RETURN ,
DUM=ELID(I)

WRITE (6,10B) DUN

ISCAN=2
RETURN

WRITE(6,102)

WRITE(6_IO0)

WRITE(6,104)

IF(T2) ?,1,?

TI=T1/CFANG

T2=T2/CFANG

LOOP ON ALL ELEMENTS

DO 10 I=I,NBXTEL
DO # J=2,4

IF(ELTOP(I,J)) 5,5,4
CONTINUE
DO 6 J=l,3

N(J)=ELTOP(I,J+I)

X(J)=JTXYZ(N(J),I)

Y(J)=JTXYZ(N(J),2)

IF(ELPROP(I,13)) 12o11,12

ELPROP(I,13)=ELSTDS

COMPUTE ELEMENT AREA, OBTAIN ELEMENT DENSITY AND



-162-

C
C
12

THICKNESSt AND COMPUTE FORCE COMPONENTS

OAREA=o5_ABS(-X(Z)w(-Y{2)+Y(3))-X(2)*(-Y(3)+Y(I})-X(3)*(-Y(Z)+Y(2))

i)
FX=-AREA*ELPROP(I_I3)*ELPROP(It2)*SIN(T2)/3e

FY=-SIN(T1)_FX

FX=-COS(T1)WFX

ADD RESULTS TO JTLOD FOR 3 NODES INCIDENT UPON CURRENT ELEMENT,

10

I00

104

i01

102

103

DO 10 J=l_3
JTLOD(N(J),LEXTNgl)=JTLOD(N(J)oLEXTNol)+FX
JTLOD(N(J)_LEXTN_2)=JTLOD(N(J)oLEXTNt2)+FY

CONTINUE

RETURN
FORHAT(#9H COMPONENT OF GRAVITY LOAD PERPENDICULAR TO PLATE)
FORNAT(51H MUST BE SPECIFIED VIA PARTICULAR BENDING SOLUTION,)
FORMAT{33H GRAVITY LOAD COMMAND IS IGNOREDo)
FORNAT(IOH REMINDER-)
FORHAT(9H ELEMENT _A8_39H NODE INCIDENCE INCORRhCTLY SPECIFIEDo)
END
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45

9

II

i0

3

4

7

5

6

C

C

C

C

8

2

12
C

C

SUBROUTINE DISLCP

AUTHOR- D. A, NAGY
LANGUAGE- ICETRAN

THIS SUBROUTINE PROCESSES THE IDISLOCATIONI COMMAND,

DOUBLE PRECISION D2

COMMON IItI2_I3,149FILLI(32)tTIgT2,T3oFILL2(35)902,FILL3(I06}

COMMON ISCANoFILL4(52},CFLENtCFWT,CFANGoFILLT(23}jJTID(P}tDUM

COMMON JEXTN,FILLS(148),IPROB,IBCON,FILLG(4},DISLOC(P)
DYNAMIC ARRAY DISLOCo JTID(D)

IF(12-1) 1,2olI

IF THE PROBLEM IS PLATE BENDING ONLYgOR IF THE

PLATE IS SIMPLY CONNECTED, A MESSAGE IS PRINTED OUT

AND THE COMMAND IS IGNORED,

IF(IBCON-I} 14,14915
WRITE(6,103}

WRITE(GtI01)

12=2
RETURN

IF(IPROB) 9,10,10

WRITE(6olO0}
WRITE(6,101)

12=2

RETURN
II=IDEF(JUNK,JUNK,JUNK,DISLOC}

IF(II) 3o3,4
DEFINE DISLOC,5,POINTER,STEP=I

I:l

GO TO 5
I=l
II=IDEFiJUNK,JUNK,JUNK,DISLOC,I)

IF(If) 5_5,6
DEFINE DISLOC(1),IOgFULL,STEP=IO

GO TO 8

I=I+l

GO TO 7

THE VALUES OF THE RIGID BODY CLOSING OF THE DISLOC}

ARE CONVERTED TO INTERNAL UNITS AND STORED,

DISLOC(I,I)=TI/CFLEN

DISLOC(It2)=T2/CFLEN
DISLOC{I,3}=T3/CFANG

12=1
13=I

RELEASE DISLOC

RETURN
DO 12 J=I,JEXTN

IF(LCDBLE(D2,JTID(J))}

CONTINUE

12,13_12

ERROR IF A NODE ON THE PATH OF THE DISLOCATION WAS
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C
C

NOT PREVIOUSLYDEFINED,

WRITE(69102) 02
ISCAN=2
RETURN

STORE NUMBER OF NODE ON THE PATH OF THE DISLOCATION

13 DISLOC(13tI4+3)=J
RELEASE JTID

RELEASE DISLOC

RETURN
100 OFORMAT(62H DISLOCATION COMMAND APPLIES ONLY TO THE PLANE STRESS PR

IOBLEM.)

101 FORMAT(25H COMMAND WILL BE IGNOREDo)

102 FORMAT(6H NODE ,ABt36H WAS NOT PREVIOUSLY DEFINED--ERROR,)
103 OFORMAT(63H DISLOCATION COMMAND APPLIES ONLY TO MULTIPLY-CONNECTED

1PLATES.)
END
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SUBROUTINE PARTIC

AUTHOR- D. A. NAGY
LANGUAGE- ICETRAN

THIS SUBROUTINE STORES THE SPECIFIED NODAL OR ELEMENT-

CENTERED VALUES OF THE PARTICULAR SOLUTION IN THE
ARRAYS PBSOLN (FOR NODAL VALUES} AND PBSOLE (FOR

ELEMENT VALUES)

COMMON IItI2,13,FILLI(33)DTI,T2_FILL2(34)_DNANE(lO),FILL3(90)
COMMON ISCAN

COMMON FILL4(52),CFLEN,FILL5(17),LEXTN,FILL6(Y),JTID(P),DUH

COMMON JEXTN,FILLV(g4),ELID(P),FILL8(22),NBXTEL,FILL9(37)
COMMON PBSOLN(P),PBSOLE(P),FILLIO(4),IPRTIC(P)

DOUBLE PRECISION DNAME
DYNAMIC ARRAY PBSOLN,PBSOLEpJTID(D)_ELID(D),IPRTIC

II=IDEF(JUNK,JUNK,JUNK,IPRTIC)

WRITE (6_900) LEXTN
IF(II) 13,14_13

DEFINE IPRTIC,LEXTN,HALF,STEP=5
IPRTIC(LEXTN)=O

IF(II) 1,1,2

II=IDEF(JUNK,JUNKDJUNKtPBSOLN)

IF(If) 3t3,4

DEFINE PBSOLNtLEXTN_POINTERtSTEP=5

GO TO 18
II:IDEF(JUNK,JUNKtJUNK,PBSOLN_LEXTN)

IF(II) 15,16P15

DEFINE PBSOLN(LEXTN),JEXTN,POINTER

DO 17 I=I_JEXTN

DEFINE PBSOLN(LEXTN,I),2,FULL

DESTROY PBSOLN(LEXTN)
DO 5 I=1,13

DO 6 J=IDJEXTN

IF(LCDBLE(DNAME(1),JTID(J))) 6,7,6
CONTINUE

ERROR IF A GIVEN NODE WAS NOT PREVIOUSLY DEFINED.

WRITE(6,100) DNAME(1)
ISCAN=2

RETURN

PBSOLN(LEXTN,J,I)=TI*CFLEN

PBSOLN(LEXTN,J,2)=T2*CFLEN
RELEASE PBSOLN

RETURN

II:IDEF(JUNKDJUNK_JUNK,PBSOLE)
IF(II) 8,8,18

DEFINE PBSOLE,LEXTNDPOINTERpSTEP=5

GO TO 19

II=IDEF(JUNKpJUNKoJUNK,PBSOLE_LEXTN)
IF(II) IB919,1B

DEFINE PBSOLE(LEXTN)tJEXTNtPOINTER
DO 20 I=IpNBXTEL

DEFINE PBSOLE(LEXTN,I),2,FULL
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18

ll
C
C
C

12
I0

I00
I01
gO0

DESTROY PBSOLE(LEXTN)

DO 10 I=ItI3

DO ii J=I,NBXTEL
IF(LCDBLE(DNAME(1)tELID(J)}) llt12tll

CONTINUE

ERROR IF A GIVEN ELEMENT WAS NOT PREVIOUSLY DEFINED,

WRITE(6,101) DNAME(I)

ISCAN=2

RETURN

PBSOLE(LEXTNtJ,1}=TI*CFLEN

PBSOLE(LEXTN,J,2)=T2*CFLEN

RELEASE PBSOLE

RETURN
FORMAT(6H NODE ,ABt32H NOT PREVIOUSLY DEFINED--ERRORe)

FORMAT(gH ELEMENT ,A8,32H NOT PREVIOUSLY DEFINED--ERROR,)

FORMAT(?H LEXTN=, 12)
END
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SUBROUTINESTDPSL
C
C AUTHOR- D. A. NAGY
C LANGUAGE- ICETRAN
C
C THIS SUBROUTINECOMPUTESTHE EXACT INTEGRALS OF
C THE STANDARDPARTICULAR SOLUTION OVER EACH ELEMENT
C AND THE EXACT NODAL VALUES FOR EACH NODE.
C

23
22

C
C
C
C
C
C

25

C

C

C

C

7

DIMENSION X(3

COMMON FILL1(

COMMON FILL4(

COMMON FILL7(

COMMON NBXTEL

COMMON PBSOLN

DOUBLE PRECIS

DYNAMIC ARRAY

DYNAMIC ARRAY

PI=3e1415926

C=T2

), Y(3)

36),T1,T2,FULL2(144),ISCAN,FILL3(52)_CFLEN,CFWT

16),LEXTN,FILL5(IO)tJEXTN,FILL6(5),JTXYZ(P)

87),ELID(P),DUMl(2),ELPROP(P)gELTOP(P),FILL8(16}

,FILL9(3),ELSTDE,FILL10(3),ELSTPO,FILL11(29)
(P),PBSOLE(P),FILL12(4),IPRTIC(P}

ION DUM

PBSOLN,PBSOLE,JTXYZ(R),ELTOP(1)_ELPROP_ELID(D)

IPRTIC

P=-TI*CFLEN*CFLEN/CFWT

II=IDEF(JUNK,JUNKgJUNK,IPRTIC)

WRITE (6,900} LEXTN

IF(II) 22,23,22

DEFINE IPRTIC,5,HALF_STEP=5

IPRTIC(LEXTN)=I

OBTAIN MATERIAL PROPERTIES

COMPUTATIONS ASSUME A HOMOGENEOUS PLATE--THUS ALL
PROPERTIES ARE OBTAINED FROM THE FIRST ELEMENT.

EX=ELPROP(196)
IF(EX} 192,1

EX=ELSTDE

EY=ELPROP(1,7)

IF(EY) 394,3
EY:EX

PX=ELPROP(1,8)

IF(PX} 596,5

PX=ELSTPO

PY=EX*PX/EY

H=ELPROP(I_2)

IF(H) 79Bo7

DUM=ELID(1)
WRITE (69100)

ISCAN=2

RETURN

DUM

DEFINE PARTICULAR SOLUTION STORAGE ARRAYS PBSOLN AND

PBSOLE., '

II:IDEF(JUNK,JUNKpJUNK,PBSOLN)

IF(II} 24P25924

DEFINE PBSOLN,LEXTN,POINTER,STEP=5
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24

26

28
27

29
C
C
C
C

10

9

12

II

1B

14
16

15

C
C
C

116

C
C
C
C

18

DEFINE PBSOLN(LEXTN)�JEXTN,POINTER

DO 26 I=I,JEXTN
DEFINE PBSOLN(LEXTN,II,2,FULL

II=IDEF(JUNK,JUNKoJUNK,PBSOLE}

IF{II} 2?,28,27

DEFINE PBSOLE,LEXTN,POINTERpSTEP=5

DEFINE PBSOLE(LEXTN)oJEXTN,POINTER

DO 29 I=I,JEXTN

DEFINE PBSOLE(LEXTN,I),2,FULL

DETERMINE AXES FOR PARTICULAR SOLUTION

FIND MAXIMUM AND MINIMUM X AND Y COORDINATES

XMAX:JTXYZ(I,I)
XMIN:XMAX
YMAX:JTXYZ(I,2}
YMIN:YMAX
DO 15 I=2,JEXTN
IF(XMAX-JTXYZ(I,1))
XMAX=JTXYZ(I,1)
GO TO 11
IF(XMIN-JTXYZ(191))
XMIN=JTXYZ(Iol)
IF(YMAX-JTXYZ(I_2))
YMAX=JTXYZ(I_2)
GO TO 15

IF(YMIN-JTXYZ(I,2))
YMIN=JTXYZ(I,2)
CONTINUE
A=ABS((XMAX-XMIN)/2.)
B=ABS((YMAX-YMIN)/21}

10,9,9

II,ii012

13,14914

15,15,16

COMPUTE AND STORE NODAL VALUES OF PARTICULAR SOLUTION

DO 116 I:I,JEXTN

XG:JTXYZ(I,1)
YG=JTXYZ(I,2)

XX=XG-XMIN-A

YY:YG-YMIN-B
FKX:6.*P/(EY*H**3.I*((I,-C)*(YY*YY-B*B)-C*PX*IXXWXX-A*A))
FKY:6,*P/(EY*H**3,)*(Cw(XX*XX-A*A}-PX*(I,-C)*(YYwYy-B*B))

PBSOLN(LEXTNoltl):FKX
PBSOLN(LEXTNtl,2}=FKY

COMPUTE AND STORE INTEGRALS OF THE PARTICULAR SOLUTION

OVER EACH ELEMENT SURFACE,

DO 17 I:ItNBXTEL

DO 18 J:Io3

X(J}:JTXYZ(ELTOP(ItJ+I},I)

Y(J}:JTXYZ(ELTOP(ItJ+I),2)

BI=Y(3)-Y(2}
B2=Y(I}-Y(3)

B3=Y(2)-Y(1)
AREA=O°5*ABS(-X(1)*BI-X(2)*B2-X(3}*B3)
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2o

19

21

C

C

C

C
C
C

17

i00

9OO

IF(X(2)-X(I}) !9,20P19
THETA:Pl/2.

XS:ABS(Y(2}-Y(1))
GO TO 21

THETA=ATAN((Y(2)-Y(1)}/(X(2)-X(I}))

XB=(X(2)-X(1))/COS(TIIETA)

YBAR:2,_AREA/XB

FL13S=(X(3}-X(1))w_2,+((Y(3}-Y(1)}e_2.}

XBAR=(FLI3S-YBARWe2.}_wO,5

SIT=SIN(THETA)

COST=COS(THETA}

CI=X(1)-XNIN-A

C2=Y(1}-YMIN-B

D:6.'xP/(EY*H_3,)

SINSQ=SITW_2,

COSSQ=COST_COST

FX2=XB_YBAR_(XB_XB+XB_XBAR+XBAR_XBAR}/12,0

FY2=(XB_YBAR_3.}/12,0
FXY=XB_YSAR_W2,_(XB+2._XBAR)/24,0

FXI=XB_YBAR_(XB+XBAR}/6,0

FYI=YBARWYBAR_XB/6oO

FCON=XB_YBAR/2,0

COMPUTE INTEGRAL OF KX OVER SURFACE

FKX:FX2*((I,-C)*SINSQ-C*PX*COSSQ)

FKX:rKX+FY2*((I.-C}*COSSQ-C*PX*SINSQ)
FKX:FKX+FXY*2

FKX:FKX+FXl*2

FKX:FKX+FYI*2

FKX=FKX+FCON*

FKX=FKX*D

PBSOLE(LEXTN,

._SIT_COSTW(I,-C+C_PX)

._((Io-C}_C2_SIT-C_PX_CIwCOST)

o_((Io-C}_C2_COST-C_PX_CI_SIT}

((I.-C)_(C2_C2-8_B)-C_PX_(CI_CI-AwA))

Itl}=FKX

COMPUTE INTEGRAL OF KY OVER ELEMENT SURFACE

FKY:FX2*((C*COSSQ-PX*(lo-C}*SINSQ))

FKY:FKY+FY2*(C*SINSQ-PX*(1,-C)*COSSQ)

FKY=FKY+FXY*2.*SIT*COST*(C-PX*(1,-C})
FKY=FKY+FXl*2.*(C*CI*COST-PX*(1,-C)*SIT)

FKY=FKY+FYI*2.*(C*CI*SIT-PX*(I.-C)*COST}

FKY=FKY+FCON*(C*(CI*C1-A*A)-PX*(1,-C)*(C2*C2-B*B))
FKY:D*FKY

PBSOLE(LEXTN_Io2)=FKY

RELEASE PBSOLE

RELEASE PBSOLN

RELEASE ELPROP

RELEASE ELTOP
RELEASE JTXYZ

RELEASE ELID

RELEASE IPRTIC

RETURN

FORMAT(9H ELEMENT ,A8, 28H HAS ZERO THICKNESS--ERRORo}

FORMAT(7H LEXTN=, 12}
END
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A7-3 ELEMENTSTIFFNESS/FLEXIBILITY MATRIX GENERATIONPHASE,

C
C
C
C
C
C
C

C
C

C
C
C
1

C
C
C

2
3

C
C
C

21

20

23

SUBROUTINE STNGEN

AUTHOR- D, A, NAGY

LANGUAGE- ICETRAN

THIS SUBROUTINE IS THE EXECUTIVE FOR THE ELEMENT

STIFFNESS/FLEXIBILITY MATRIX GENERATION PHASE.

COMMON FILLI(I82),ISCANgFILL2{87)tJTXYZ(P)oFILL3(87)tELID(P)

COMMON FILL4(2),ELPROP(P)oELTOP(P)tFILLS(14).ELEXT(P),FILL6
COMMON NBEL,FILLT(2)oELSTDEtELSTDGIFILL8(2),EL$TPO,FILL9(4)

COMMON ELSTMT(P),FILLIO(IS)oIPROB

DYNAMIC ARRAY JTXYZ(R}.ELID(D)tELPROP,ELTOP(I}IELEXT(1)oELSTMT

DIMENSION TEMP(24), NODE(3)
DOUBLE PRECISION DUM
TYPE=,FTOD t
DEFINE ELSTMT,NBEL,6,4

LOOP ON ALL ACTIVE ELEMENTS

DO 7 I:I,NBEL
IN:ELEXT(1)

IF(TYPE-ELPROP(ELEXT(1),I)} 1,2,1

ERROR--WRONG ELEMENT TYPE

DUM:ELID(IN)

WRITE (6,100)

ISCAN=2

RELEASE ELID

GO TO 99

DUM

DETERMINE COORDINATES OF ELEMENTS THREE VERTICES,

DO 3 J:l,3
NODE(J)=ELTOP
XI:JTXYZ(NODE
YI:JTXYZ(NODE
X2=JTXYZ(NODE
Y2=JTXYZ(NODE
X3=JTXYZ(NODE
Y3=JTXYZ(NODE

ELEXT(1),J+I)

I},i}

i),2}

2},i}
2),2}

3},I)
3),2}

RETRIEVE THE ELEMENTPROPERTIES.

EX:ELPROP(IN,6)

IF(EX} 20,21,20

EX:ELSTDE
EY:ELPROP(INg7}

PX=ELPROP(IN,8)

IF(PX} 22,23,22

PX=ELSTPO



-171-

22

25
24

C
C
C

4

C
C
C
C
C
C
5

99

i00

i01

PY:PX*EX/EY

G=ELPROP(IN,12)

IF(G) 24925924
G:ELSTDG

H=ELPROP(IN,2)

IF(H) 5,495

ERROR--ELEMENT HAS ZERO THICKNESS

DUM=ELID(IN)
WRITE (6,101) DUM

ISCAN=2

RELEASE ELID
GO TO 6

CALL STGFTD TO COMPUTE THE DIAGONAL AND LOWER HALF

OF THE MATRIX FOR THE CURRENT ELEMENT, ANSWER IS
RETURNED IN THE ARRAY TEMP AND MUST BE STORED IN

THE DYNAMIC ARRAY ELSTMT,

CALL STGFTD(XI,YIoX21Y2,X31Y3oEXIEY,PXIPYtG,HolPROBITEMP}

DO 7 J=l_6

DO 7 K=I_4

MA=4_J+K-4
ELSTMT(I,J,K)=TEMP(MA)

RELEASE JTXYZ
RELEASE ECTOP

RELEASE ELSTMT

RELEASE ELPROP
RELEASE ELEXT

RETURN
FORMAT(9H ELEMENT _A8,31H IS NOT OF TYPE 'FTOD'--ERROR,)
FORMAT(gH ELEMENT tA8,28H HAS ZERO THICKNESS--ERROR,)
END
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SUBROUTINE STGFTD(XI,YI,X2,Y2oX3,Y3,EX,EY,PX,PY,G,H,IPROB'TEMP)

AUTHOR- O. A. NAGY

LANGUAGE- FORTRAN IV

THIS SUBROUTINE COMPUTES THE DIAGONAL AND LOWER HALF

OF THE ELEMENT STIFFNESS/FLEXIBILITY MATRIX. FOR THE

BENDING PROBLEM, IT CALLS NDUAL TO PERFORM THE

DUALITY CONVERSION OF PROPERTIES,

DIMENSION A(3), B(3), TEMP(24)

IF(EY) 1,1,2

EY:EX

IF(PY) 5,5,4
IF(EX*PX-EY*PY) 5,6,5

PY=EX*PX/EY

IF(IPROB) 7,8,8
CALL NDUAL(EX,EYtPXoPY,GtH)

A(1 =X3-X2

A(2 =Xl-X3

A(3 :X2-Xl

B(I :Y3-Y2

B(2 :Y1-Y3

B(3 :Y2-YI
AREA=O.5*ABS(-XI*B(1}-X2*B(2}-X3*B(3)}
D:H/(4.0*AREA*(1.-PX*PY))

N=I
PC=(I.-PX*PY)*G

DO 9 I=1,3

DO 9 J:i,l
TEMP(N)=D*(EX*B(I}*B(J)+PC*A(I)*A(J})

TEMP(N+I)=-D*(EX*PX*B(I}*A(J}+PC*A(1)*B(J))

TEMP(N+2)=-D*(EY*PY*A(I}*B(J}÷PC*B(1)*A(J))
TEMP(N+3)=D*(EY*A(1)*A(J)+PC*B(1)*B(J})

N=N+_
CONTINUE
RETURN
END

C
C
C
C
C
C

SUBROUTINE NDUAL(EXoEY,PXJPYoG,H}

AUTHOR- D. A. NAGY

LANGUAGE- FORTRAN IV

THIS SUBROUTINE PERFORMS THE DUALITY

EXT:-I2.0*(IeO-PX*PY)/(EY*H**4oO)

EY=EXT*EY/EX
G:-3.0/(G*H**#.O)

PX=-PX

PY=-Py

EX=EXT
RETURN

END

CONVERSION

|
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NON-SYMMETRIC STRUCTURAL

GENERATION PHASE,

STIFFNESS/FLEXIBILITY MATRIX

C

C

C

C

C

C

C

C
C
C
C

C
C
C

.

4

11

C
C
C
I0

C
C
C

SUBROUTINE STNSAS

AUTHOR- D, A, NAGY

LANGUAGE- ICETRAN

THIS SUBROUTINE GENERATES THE NON-SYMMETRIC STIFFNESS/

FLEXIBILITY MATRIX, IT IS STORED IN DYNAMIC ARRAY FCMAT=

COMMON FILLI(IOO)oNSOL,FILL2(67)oFCMAT(P)oICUREL(P)tIRELl(P)
COMMON FILL3(155)

COMMON JINT(P)_FILL4(34)gELTOP(P)_FILLS(14)gELEXT(P)gNDUM_NBEL

COMMON FILL6(11)_ELSTMT(P)
DYNAMIC ARRAY FCMAT(R)tICURELoIRELIgELSTMT_ELEXT(1)gJINT_ELTOP(1)

DIMENSION NODE(3)

DEFINE STORAGE ARRAY FCMAT AND BOOKKEEPING ARRAYS

ICUREL AND IREL1,

DEFINE FCMAToNJ_POINTER

DEFINE ICUREL,NJ,POINTER

DEFINE IRELIP2*NJtNJ_HALF
DESTROY IREL1

LOOP ON ALL'ACTIVE ELEMENTS,

DO 2 IE=I,NBEL

DO 1N=I_'3

NODE(N):JINT(ELTOP(ELEXT(IE)))

NS=O

DO 2 I:193

DO 2 J=IoI
NS=NS+I

IF(NODE(1)-NJ) 3_3,2

IF(NODE(J)-NJ) 4_4,2

DEFINE FCMAT(NODE(J)),2_NJ_POINTER
II=IDEF(JNK,JNKpJNKgFCMAT,NODE(J),2_NODE(1))

IF(II) 10ollo10
DEFINE FCMAT(NODE(J)o2_NODE(1)-l)P29FULL

DESTROY FCMAT(NODE(J),2*NODE(1)-I)

DEFINE FCMAT(NODE(J)o2_NODE(1))o2,FULL

DESTROY FCMAT(NODE(J),2_NODE(1))

ADD CONTRIBUTION OF CURRENT ELEMENT TO FCMAT

OFCMAT(NODE(J),2*NODE(1)-Itl)=FCMAT(NODE(J)t2_NODE(I)-lol} +
I ELSTMT(IE,NS,I)

OFCMAT(NODE(J)t2*NODE(1)-It2)=FCMAT(NODE(J)o2*NODEII)-lJ2) +

1 ELSTMT(IE,NS,2)

UPDATE BOOKKEEPING ARRAY IRELI
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C
C
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IRELI(2*NODE(I)-IoNODE(J)):I

FCMAT(NODE(J),2*NODE(1),I):FCMAT{NODE(J)o2*NODE(1),I)
ELSTMT(IE,NS,3)

FCMAT(NODE(J),2*NODE(1),2)=FCMAT(NODE(J)p2*NODE(1),2)

ELSTMT(IE,NS,4)
IRELI(2*NODE(1),NODE(J))=I

IF(I-J) 5,2,5

DEFINE FCMAT(NODE(1)),2_NJoPOINTER

II=IDEF(JNK,JNK,JNK,FCMAToNODE(1),2_NODE(J))

IF(II) 20,21t20

DEFINE FCMAT(NODE(I)o2*NODE(J)-I)_2,FULL

DESTROY FCMAT(NODE(1),2_NODE(J)-I)

DEFINE FCMAT(NODE(1)t2WNODE(J))p2,FULL

DESTROY FCMAT(NODE(1),2_NODE(J))
OFCMAT(NODE(1),

i ELSTMT(IE,NS,
IRELI(2*NODE(J

OFCMAT(NODE(I),

1 ELSTMT(IE,NS,
OFCMAT(NODE(1),

I ELSTMT(IE,NS,
OFCMAT(NODE(1),

1 ELSTMT(IE,NS,

IRELI(2*NODE(J

CONTINUE

+

+

2_NODE(J)-I,I)=FCMAT(NODE(1)p2*NODE(J)-I,I)

1)
)-loNODE(I))=I

2_NODE(J)-I,2)=FCMAT(NODE(I)_2*NODE(J)-i,2)

3)
2*NODE(J),I)=FCMAT(NODE(1),2*NODE(J),I) +

2)
2WNODE(J),2)=FCMAT(NODE(I},2*NODE(J),2) +

4)

},NODE(1))=1

+

CONSTRUCT BOOKKEEPING ARRAY ICUREL

DO 8 IC=IoNJ

N:O

DEFINE ICUREL(IC)pS,HALF,STEP=5

NJ2=2*NJ

DO 6 IR=I,NJ2
IF(FCMAT(IC,IR,I)) ?o6,7

N=N+I
ICUREL(IC,N)=IR

CONTINUE

DEFINE ICUREL(IC}oNoHALF

CONTINUE

RELEASE FCMAT
RELEASE ICUREL

RELEASE IREL1

RELEASE ELSTMT

RELEASE ELEXT
RELEASE JINT

RELEASE ELTOP

ASSEMBLE STACK OF PROGRAMS FOR REMAINDER OF PROBLEP' SOLUTION,

ADD TO STACK (I,OSTNBKS o )

ADD TO STACK (ltOSTNSSL t)

ADD TO STACK (I,OSTNBCM o)

TRANSFER TO STACK
END
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A?-5 BOUNDARYCONDITIONS PHASE

SUBROUTINESTNBCM
C
C AUTHOR- D. A. NAGY
C LANGUAGE- ICETRAN

C

C THIS IS THE EXECUTIVE PROGRAM FOR THE BOUNDARY

C CONDITIONS PHASE. IT PROCESSES THE BOUNDARY CON-

C DITIONS FOR EACH BOUNDARY IN ORDER AROUND THE
C BOUNDARY BY CALLING A DICTIONARY SUBROUTINE WHICH

C IN TURN CALLS THE APPROPRIATE BOUNDARY CONDITION
C SUBROUTINE. IT ALSO GENERATES THE LOAD OR

C ROTATION VECTOR.

C

IOI

3

51

2O

50

II

21
I0

31

3O

32
40

99

COMMON IMIN,FILLI(99),NSOL,FILL2(67)PFCMAT(P)_ICUREL(P)gIRELl(P)

COMMON FILL3(158)IIPROB,IBCONgBDID(P),BDCOND(P)

DOUBLE PRECISION DUM
DYNAMIC ARRAY BDID(D),BDCOND

DYNAMIC ARRAY FCMAT,ICURELtIREL1
IMIN=O

IF(IPROB} 192,2

CALL STNBLV
L=3

GO T

CALL

L=2
II:I

IF(I

CALL

0 3

STNSLV

DEF(JNKoJNK_JNKgDISLOC)

I} 709'39101

SDISLC

GO TO 3
DO 99 IBN:ItlBCON

J=l

NN=BDCOND(IBN,19L)

IF(NN) 20_51920

DUM=BDID(IBN}

WRITE(69100} DUM

GO TO 70

J:J+l

NST=BDCOND(IBN,J,L}

IF(NST) 50951,50
IF(NN-NST} 10911910

IF(BDCOND(IBNgJ+191)) 20,21o20

J=l
NODE=J

GO TO (31931930}9L

CALL DICTS(IBNpNSTgJ)
GO TO 32

CALL DICTB(IBNgNSTgJ)

IF(J-NODE} 40999940

NST=BDCOND(IBNoJtL}
GO TO 10

CONTINUE

IF(IMIN-3} 20092019201
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200 WRITE (6,102)
WRITE (6,103)
WRITE (6,104)
GO TO 7O

201 GO TO 300
300 DEFINE FCMAT,NSOLtPOINTER

DEFINE ICUREL,NSOL,POINTER

DEFINE IREL1,2*NSOL,NSOL,HALF

DO 60 I=I,NSOL

II=IDEF(JNK,JNK.JNK_FCMAT_I)

IF(II) 61,60,61

61 DEFINE FCMAT(1),2*NSOL,POINTER

60 CONTINUE

DO 64 IC=I,NSOL

N=IDEF(JNK,JNK,JNK,ICUREL,IC)

DO 62 I=ltN
IF(ICUREL(IC,I)-NSOL) 62,62o63

62 CONTINUE
I=N+I

63 DEFINE ICUREL(IC),I-1,HALF

64 CONTINUE
70 RELEASE BDID

RELEASE BDCOND

RETURN
lUO OFORMAT(25H CONDITIONS FOR BOUNDARY

IED--ERROR)
102 FORM_T(50H ERROR--MINIMUM BOUNDARY

103 FORMAT(52H PLEASE RESUBMIT PROBLEM
104 FORMAT(49H PLACEMENT COMPONENTS FOR

END

,A8, 32H NOT COMPLETELY SPECIFI

CONDITIONS NOT SPECIFIED.)

AND SPECIFY AT LEAST 3 DIS-)

THE STRETCHING PROBLEM.)
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c
c
c
c
c
c
c

C
C
C
C

99
C
C
C
C
C
C
C
C
C
C
C

SUBROUTINE STNSLV

AUTHOR- D, A. NAGY
LANGUAGE- ICETRAN

THIS SUBROUTINE CONSTRUCTS THE GENERALIZED NODAL LOAD

VECTOR FOR THE STRETCHING PROBLEMI

COMMON FILLl(IOO)_NSOL,NN_NLDSItFILL2(47}pLEXT(P)gFILL3(I#)

COM_ION KPPRI(P)_FILL#(104)PJTLOD(P)tFILL5(#3)_NJ_FILL6(11}_JEXT(P)

DYNAMIC ARRAY KPPRI(R),JEXTtLEXT_JTLOD(R)

DEFINE KPPRIgNJ92_NLDSI

DESTROY KPPRI

ADD CONCENTRATED NODE LOADS TO LOAD VECTOR (INCLUDES LINE LOADS

AND GRAVITY LOADS)

DO 99 I:I_NSOL
NODE:JEXT(1)

DO 99 L=I_NLDSI

LOAD:LEXT(L}

KPPRI(NODE_2_L-I)=KPPRI(NODEt2_L-Z)+JTLOD(NODEpLOAD_I)
KPPRI(NODEt2_L)=KPPRI(NODE,2_L)+JTLOD(NODE_LOAD,2}

ADD ELEMENT (SURFACE AND VOLUME) LOADS TO LOAD VECTOR

ADD THIS ROUTINE WHEN 'ELEMENT LOADS' COMMAND BECOMES

OPERATIONAL

ADD ELEMENT TEMPERATURE LOADS TOLOAD VECTOR

ADD THIS ROUTINE WHEN 'ELEMENT TEMPERATURE LOADS' COMMAND

BECOMES OPERATIONAL

RELEASE KPPRI

RELEASE JEXT

RELEASE LEXT

RELEASE JTLOD

RETURN
END
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C
C
C
C
C
C
C

3

7

5

4

6

SUBROUTINE STNBLV

AUTHOR- D. A. NAGy

LANGUAGE- ICETRAN

THIS SUBROUTINE ASSEMBLES THE GENERALIZED NODAL

ROTATION VECTOR FOR THE BENDING PROBLEM.

COMMON FILLI(IO2)_N

COMMON FILL4(IO2)IJ

COMMON FILL7(34),EL

COMMON FILLg(46),PB

DIMENSION A(3),B(3)
DYNAMIC ARRAY EPPRI

DYNAMIC ARRAY IPRTI

DEFINE KPPRI_NJ_2*N

DESTROY KPPRI

DO 99 IE=I,NBEL
NEL=ELEXT(IE)

DO 1N=lt3

LDSItFILL2I¢7),LEXT(P)oFILL3(_4),KPPRI(P}

TXYZ(P)tFILL5(45)_NJtFILL6(9)_JINT(P)

TOP(P)tFILL8(I#)pELEXT(P)_NFIL_NBEL

SOLN(P),PBSOLE(P)oFILLIO(4)gIPRTIC(P)

_NODE(3),X(3)oY(3)
(R)_ELEXT(I)_ELTOP(I)oJTXYZ(R),JINTtLEXT
CgPBSOLE_PBSOLN

LDSI

NODE

NODE

X(N

Y(N

A(I

A(2

A(3
B(1

B(2

B(3
AR

GX

GY

DO

AR

AR

(N)=ELTOP(NELoN+I}
(N}=JINT(NODE(N))
=JTXYZ(NODE(N)tl)
=JTXYZ(NODE(N),2)
:X(3

:X(1
:X(2

:Y(3

:Y(I

:Y(2

EA:O.
:06

=Oe

-X(2

-X(3
-X(l

-Y(2

-Y(3

-Y(1

2 N=lt3
EA=AREA-X(N)*B(N)
EA=ABS(AREA)/2.

ADD CONTRIBUTION OF PARTICULAR SOLUTION TO GENERALIZED NODAL

ROTATION VECTOR

DO 98 L:ItNLDSI

LN=LEXT(L)

IF(IPRTIC(LN)) 3,4t3
DO 5 N=lt3

IF(NODE(N)-NJ) 7,7p5

OKPPRI(NODE(N},2*L-I)=KPPRI(NODE(N)92*L-I}+B(N)/(2.*AREA)*PBSOLE(

1 LNgNELol}

OKPPRI(NODE(N),2*L)=KPPRI(NODE(N),2*L)-A(N)/(21*APEA)*PBSOLE(LNp

1 NEL,2)

CONTINUE

GO TO 98
DO 6 N=1_3
GX=PBSOLN(LN,NODE(N)ol) + GX
GY=GY + PBSOLN(LNtNODE(N)o2)
GX=(GX*2./9.+PBSOLE(LNtNELpZ)/3e)/2,
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8
98

C
C
C
C
C
C

99

GY=(GY_2oI9,+PBSOLE(LN,NEL,2)/3o)I2,

DO 8 N=Io3

IF(NODE(N)-NJ) 9t9o8
KPPRI(NODE(N)_2_L-I)=KPPRI(NODE(N)_2_L-I)+B(N)_GX
KPPRI(NODE(N)t2_L)=KPPRI(NODE(N)p2_L)-A(N)_GY

CONTINUE

CONTINUE

ADD ELEMENT TEMPERATURE CURVATURE CONTRIBUTION TO ROTATION VECTOR

ADD THIS ROUTINE WHEN 'ELEMENT TEMPERATURE LOADS' COMMAND

BECOMES OPERATIONAL

CONTINUE

RELEASE KPPRI
RELEASE ELEXT

RELEASE ELTOP

RELEASE JTXYZ
RELEASE JINT

RELEASE LEXT

RELEASE IPRTIC

RELEASE PBSOLE

RELEASE PBSOLN

RETURN
END
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C
C
C
C
C
C
C

SUBROUTINE DICTS(IBNoIBCtNODE)

AUTHOR- D. A. NAGY

LANGUAGE- FORTRAN IV

THIS IS A DICTIONARY SUBROUTINE FOR

TO THE APPROPRIATE SUBROUTINE FOR

STRETCHING BOUNDARY CONDITION

GO TO (It2,3_4_5,6,To8),IBC

CALL SDISPL(IBNtNODE)
RETURN

CALL SSTRES(IBNgNODE)

RETURN

CALL SELAST

RETURN

CALL SEDGEB

RETURN

CALL SMIXED

RETURN
CALL SRIGID

RETURN
CALL SRIGID

RETURN

CALL SRIGID

RETURN

END

IBNoNODE)

IBN_NODE)

IBN,NODE)

IBNoNODE}

IBNgNODE}

IBNgNODE)

BRANCHING

PROCESSING THE

SUBROUTINE DICTB(IBN_IBCtNODE}
C

C AUTHOR- D. A. NAGY

C LANGUAGE- FORTRAN IV
C

C THIS IS A DICTIONARY SUBROUTINE

C THE APPROPRIATE SUBROUTINE FOR

C BENDING BOUNDARY CONDITION
C

I

2

3

4

5

6

GO TO (Io2,3t4tSP6)tIBC

CALL BDISPL(IBNoNODE)

RETURN

CALL BSTRES(IBNoNODE)

RETURN

CALL BELAST(IBNtNODE)

RETURN
CALL BEDGEB(IBNgNODE)
RETURN

CALL BMIXlD(IBN_NODE)
RETURN

CALL BMIX2D(IBNtNODE}
RETURN

END

TO BRANCH TO

PROCESSING THE
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C
C
C
C
C
C
C
C

4

SUBROUTINE SDISPL(IBNtNODE)

AUTHOR- D, A, NAGY
LANGUAGE- ICETRAN

THIS SUBROUTINE INTRODUCES DISPLACEMENT BOUNDARY
CONDITIONS FOR THE STRETCHING PROBLEM ON BOUNDARY

BEGINNING AT NODE POSITION -NODE-
IBN

COMMON IMIN_FILLI(IOI),NLDSIoFILL2(63)tKPPRI(P)_FILL3(161)

COMMON JINT(P),FILL4(86)tBDCOND(P)

DYNAMIC ARRAY JINT_BDCONDtKPPRI(R)

I=BDCOND(IBNtNODE_I)

NINT=JINT(1)

IMIN=IMIN+I

DO 1 L=I_NLDSI

KPPRI(NINT,2*L-1)=BDCOND(IBN_NODE_4)

KPPRI(NINT,2*L)=BDCOND(IBNtNODEt5)

IF(BDCOND(IBNtNODE+I_I)) 2t293

NODE=I
GO TO 7
NODE=NODE+I
IF(BDCOND(IBNtNODE,2)-I) 4t#95

RELEASE BDCOND

RELEASE JINT

RELEASE KPPRI

RETURN

END
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SUBROUTINESSTRES(IBN,NODE)
C
C AUTHOR- D° A, NAGY
C LANGUAGE- ICETRAN
C
C THIS SUBROUTINEINTRODUCESSTRESS BOUNDARY
C FOR THE STRETCHINGPROBLEMON BOUNDARYIBN
C AT NODE POSITION SPECIFIED BY -NODE-
C

CONDITICNS
BEGINNING

ii
13

12

I0
14

20

1

4

5

6

7

COMMONFILL1(IO2)gNLDSI,FILL2(63)tKPPRI(P)gFILL3(IO2)tJTXYZ(P)
COMMONFILL4(57),JINT(P)tFILL5(86)_BDCOND(P)
DYNAMICARRAYJTXYZ(R),BDCOND_KPPRI(R)
N=I
IF(NODE-I) 10_11,10
IF(BDCOND(IBN_NODE+Np1)) 12P13912
NPR=BDCOND(IBNtNODE+N-I_I)
GO TO 14
N=N+I
GO TO 11
NPR=BDCOND(IBNpNODE-1D1)
XP=JTXYZ(NPRtl)
YP=JTXYZ(NPRo2)
FXPR=O,
FYPR=O,
NC=BDCOND(IBNtNODE_I)
XC=JTXYZ(NC_I)
YC=JTXYZ(NC92}
FLP=SQRT((XC-XP)**2,+(YC-YP)**2,)
FXC=BDCOND(IBN,NODE_4)
FYC:BDCOND(IBN_NODE_5)
NXT=BDCOND(IBN_NODE+Itl)
IF(NXT) Iolo2
NEXT=I
NXT=BDCOND(IBN_NEXTtl)
GO TO 3
NEXT=NODE+I

XNX=JTXYZ(NXTtl)

YNX=JTXYZ(NXT,2)
FLC=SQRT((XNX-XC)**2,+(YNX-YC)_*2,)

INDIC=BDCOND(IBNtNEXT,2)

GO TO (4tS,49_t4,4t4o4)tINDIC

FXNX=O,
FYNX=O,
GO TO 6
FXNX=BDCOND(IBN_NEXTo4)
FYNX:BDCOND(IBN_NEXToS)
RXI=(FLP*(FXPR+2.*FXC)+FLC*(FXNX+2.*FXC))/6,
RYI=(FLP*(FYPR+2,*FYC)+FLC*(FYNX+2,*FYC))I6,

NINT=JINT(NC)
DO ? L=19NLDSI
KPPRI(NINT,2*L-1)=KPPRI(NINTt2_L-1)+RXl

KPPRI(NINT92*L)=KPPRI(NINT92*L)+RYI

NODE=NEXT
GO TO (8t9,B_B,B,B,BoB),INDIC

RELEASE BDCOND
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9

RELEASE JTXYZ
RELEASE KPPRI
RETURN
NPR=NC
FXPR=FXC
FYPR=FYC
FLP=FLC
NC=NXT
XC=XNX
YC=YNX
FXC=FXNX
FYC=FYNX
GO TO 20

END
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C
C
C

2
C
C
C
C

5

SUBROUTINE SMIXED(IBN,NODE)

AUTHOR- D. A. NAGy

LANGUAGE- ICETRAN

3OO

?

6
8

THIS SUBROUTINE PROCESSES THE MIXED BOUNDARY CONDITIONS

FOR THE PORTION OF BOUNDARY IBN BEGINNING WITH NODF.

COMMON FILLI(IOO),NSOL,NDUMpNLDSIiFILL2(63)pKPPRI(P},FILL3(I02)

COMMON JTXYZ(P)
COMMON FILL5(45),NJ,FILLG(9)iJINT(P),FILLT(54}iNSYMiFILL8(31)

COMMON BDCOND(P)
DYNAMIC ARRAY KPPRI(R),JTXYZ(R},JINT,BDCOND

DIMENSION A(4)

N=I

DETERMINE NODE JUST BEFORE CURRENT NODE

IF(NODE-I) 1,1,2
IF(BDCOND(IBN,NODE+N,I)) 3,4,3

NPR=BDCOND(IBN,NODE+N-I,I)

GO TO 5

N=N+I

GO TO 1

NPR=BDCOND(IBN,NODE-I,I)

DETERMINE COORDINATES OF PREVIOUS NODE, CURRENT NODE,

AND LENGTH OF SEGMENT CONNECTING THEM.

XP:JTXYZ(NPR,1}

YP=JTXYZ(NPR,2)

NC=BDCOND(IBN,NODE,I}
XC=JTXYZ(NC,1)

YC=JTXYZ(NC,2)

FLP=SQRT((XC-XP)**2.+(YC-YP}**2,)

DETERMINE NEXT NODE, ITS COORDINATES, AND LENGTH OF

SEGMENT FROM CURRENT NODE TO NEXT NODE,

NX:BDCOND(IBN,NODE+Iol)

IF(NX) 697,6

NEXT:I

NX=BDCOND(IBN,NEXT,I)
GO TO 8

NEXT=NODE+I

XN=JTXYZ(NX,I)

YN=JTXYZ(NX,2)

FLC:SQRT((XN-XC)**2,+(YN-YC)**2e)

DETERMINE FORCE COMPONENT AND ANGLEe

RQI:O.5*(FLC+FLP)*BDCOND(IBN,NODE,5)

THETA:BDCOND(IBN,NODE,6}
CT=COS(THETA}
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C
C

C

C

C

C

C
10

50

ST=SIN(THETA)

URI:BDCOND(IBN,NODE_4)

I=JINT(NC)

LOOP ON ALL ACTIVE NODES.

DO 99 J=I,NJ

IF(J-I) 9,10t9

MODIFY SUBMATRIX I,I OF GLOBAL STIFFNESS MATRIX AND

MODIFY SUBMATRIX I OF LOAD VECTOR KPPRI

GO TO (50p51),NSYM

CALL FNDSYM(N,IiIoA)

GO TO 52

51 CALL FNDNSM(N,IiltA}

52 DO 55 L=I,NLDSI

SIX=KPPRI(It2*L-1)

SIY=KPPRI(It2*L)

OKPPRI(It2*L)=RQI-ST*SIX+CT*SIY+URI*($T*(CT*A(1)+_T*A(2))

I CT*(CT*A(3)+ST*A(4)))

55 KPPRI(I_2*L-1):URI

A(4)=ST*ST*A(1)-ST*CT*(A(2}+A(3)}+CT*CT*A(4)

A(1)=1.

A(2)=O.

A(8}:O.

GO TO (53_54),NSYM

53 CALL STRSYM(I,ItA)

GO TO 99

54 CALL STRNSM(I,IoA)

GO TO 99

C

C
C

C

C

9.
6O

61

62

63

64

66

65

67

68

99

C

MODIFY SUPER-ROW I OF GLOBAL STIFFNESS MATRIX (I=INTERNAL

NODE NUMBER OF CURRENT NODE), AND MODIFY SUBMATRICES 1

TO I-1 OF THE LOAD VECTOR KPPRI,

GO TO (60,61),NSYM

CALL FNDSYM(N,I,J_A)

GO TO 62

CALL FNDNSM(N,ItJ_A)

IF(N) 99_99,63

IF(J-I) 64,65,65

DO 66 L=IoNLDSI

KPPRI(J,2*L-1)=KPPRI(J,2*L-I)-URI*(CT*A(1)+ST*A(3))

KPPRI(J,2*L)=KPPRI(J_2*L)-URI*(CT*A(2)+ST*A(4))

A(4)=-ST*A(2)+CT*A(4)

A(S)=-ST*A(1)+CT*A(S)

A(1)=O.

A(2}=O.

GO TO (67,68),NSYM

CALL STRSYM(I,JgA)

GO TO 99

CALL STRNSM(ItJoA)

CONTINUE
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C
C
C

2O
21

22

23

24

28

128

27
29

MODIFY SUPER-COLUMN I OF GLOBAL STIFFNESS MATRIX AND

SUBMATRICES I+1 TO NSOL.

A(

25

26

199

DO 190 J:ItNJ

IF(J-I) 20,199,20
GO TO (21,22),NSYM

CALL FNDSYM(N,JPI,A)
GO TO 23

CALL FNDNSM(N,J,I,A)

IF(N} 199,199,24

IF(J-I) 29,29,28

IF(J-NSOL} 128,128,29

DO 27 L=loNLDSI
KPPRI(J,2*L-U)=KPPRI(J,2*L-I)-URI*(CT*A(1)+ST*A(2))

KPPRI(JP2*L)=KPPRI(J,2*L)-URI*(CT*A(3)+ST*A(4)}

A(4}=CT*A(4)-ST*A(3}

2)=-ST*A(1)+CT*A(2)

A(I}=O.

A(3)=O.
GO TO (25,26),NSYM

CALL STRSYM(J,I,A)

GO TO 199

CALL STRNSM(J,IIA)

CONTINUE

DETERMINE IF NEXT NODE ALONG BOUNDARY IS ALSO MIXED
BOUNDARY CONDITIONS TYPE. IF SO,NEXT NODE BECOMES

CURRENT NODE, CURRENT NODE BECOMES PREVIOUS NODE,

AND ENTIRE PROCEDURE IS REPEATED FROM STATEMENT 300.

IF NOT, SUBROUTINE RETURNS CONTROL TO STNBCM.

2O0

201

NCOND=BDCOND(
IF(NCOND-5) 2
RELEASE BDCON
RELEASE JTXYZ
RELEASE JINT
RELEASE KPPRI
NODE=NEXT
RETURN
NPR=NC
XP=XC

YP=YC

FLP=FLC

NC=NX
XC=XN

YC=YN

NODE=NEXT

GO TO 300
END

IBN,NEXT,2)

00,201t200
D
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3
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0

SUBROUTINE FNDSYM(NgI,J,A)

AUTHOR- D.A. NAGY

LANGUAGE- ICETRAN

THIS SUBROUTINE RETRIEVES 2X2 SUBMATRIX IoJ FROM THE

GLOBAL STIFFNESS/FLEXIBILITY MATRIX AND STORES IT IN

DIMANSIONAL ARRAY A.

IF THE SUBMATRIX IS ZERO OR ABOVE THE DIAGONAL9 THE

RETURNED =0

COMMON FILLIII60}oKDIAG(P),KOFDG(P}_IOFDG(P)

DYNAMIC ARRAY KDIAG(R},KOFDG(R}gIOFDG

DIMENSION A(4)

IF(I-J) 1,293

DO 4 L=Io4

A(L)=KDIAG(IoL)
N=2

RETURN

N=I

RETURN

M=IOFDG(I,I}

DO 7 K=I,M

L=IOFDG(I,K*2)

IF(L-J) 7,8,7

CONTINUE

N=I

RETURN

MPOS=IOFDG(I,K*2+I)

DO 9 L:I,4'

A(L)=KOFDG(MPOSgL)

N=2

RETURN

END

SYMMETRIC

THE ONE-

VALUE OF N IS
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C
C
C
C
C
C
C

SUBROUTINE STRSYM(ItJ,A}

AUTHOR- D, A, NAGY

LANGUAGE- ICETRAN

THIS SUBROUTINE TRANSFERS SUBMATRIX 19J FROM ARRAY
THE SYMMETRIC GLOBAL STIFFNESS/FLEXIBILITY MATRIX,

COMMON FILLI(

DYNAMIC ARRAY

DIMENSION A(@

IF(I-J) lo2,3
RETURN

DO # L=Io4

KDIAG(19L)=A(L)
RETURN

M=IOFDG(I_I)

DO 5 L=ItM
IF(IOFDG(I_L*2)-J)
CONTINUE

RETURN

MPOS=IOFDG(ItL*2+I)

DO 7 L=194
KOFDG(MPOS,L)=A(L)
RETURN
END

160),KDIAG(P),KOFDG(P)tIOFDG(P)

KDIAG(R),KOFDG(R}pIOFDG

)

5,6_5

A BACK INTO

SUBROUTINE FNDNSM(N,I,J,A}
C
C AUTHOR- D. A. NAGY

C LANGUAGE- ICETRAN
C
C THIS SUBROUTINE RETRIEVES 2X2 SUBMATRIX

C GLOBAL STIFFNESS/FLEXIBILITY MATRIX AND

C DIMENSIONAL ARRAY A, IF THE SUBMATRIX
C ISRETURNED =0
C

l,J FROM THE NON-SYMMETRIC
STORES IT IN THE ONE-

IS ZERO, THE VALUE OF N

COMMON FILLI(168),FCMAT(P),DUM(2),IRELI(P)

DYNAMIC ARRAY IRELloFCMAT

DIMENSION A(4)

N=IRELI(2*I,J)+I

GO TG (lt2)_N

RETURN

A(1)=FCMAT(J_2*I-ltl)

A(2)=FCMAT(Jt2*I-lt2)

A(3)=FCMAT(J_2*I,I}
A(4}=FCMAT(J,2*I,2)
RETURN

END
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C
C
C
C
C
C
C

2

3

4

SUBROUTINE STRNSM(IoJoA}

AUTHOR- D- A, NAGY

LANGUAGE- ICETRAN

THIS SUBROUTINE TRANSFERS THE SUBMATRIX 19J

INTO THE NON-SYMMETRIC STIFFNESS/FLEXIBILITY

FROM ARRAY

MATRIX,

COMMON FILLl(168)tFCMAT(P},ICUREL(P)tIREL1(P)

DYNAMIC ARRAY FCMAToICUREL,IREL1

DIMENSION A(4)

II:IDEF(JNK,JNK,JNK,FCMAT,Jt2_I)

IF(If} 1p2,1
DEFINE FCMAT(J_2*I-I),2,FULL

DEFINE FCMAT(J,2_I)92,FULL

DESTROY FCMAT

IRELI(2_I-1,J)=I

IRELI(2*I,J)=I
N=IDEF(JNK,JNKoJNK_ICURELoJ}

DO 3 L=IDN
IF(ICUREL(J.L)-2_I-1) 3,4t4

CONTINUE

GO TO 6

DEFINE ICUREL(J},N+2_HALF

KK=N-L+I

DO 5 K=I

ICUREL(J

ICUREL(J

ICUREL(J

FCMAT(JI

FCMAT(Jo

FCMAT(Jo
FCMAT(J,

RETURN

oKK

_N+3-K):ICUREL(J_N+I-K}

IL):2*I-1

tL+l)=2*l

2'*I-1,1)=A(1)
2*I-1t2}=A(2)

2"191)=A(3)
2"192)=A(4}

DEFINE ICUREL(J).N+2,HALF

ICUREL(JtN+I)=2*I-1

ICUREL(JtN+2)=2*I

GO TO I

END

A BACK
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NON-SYMMETRIC SOLVER INTERFACE PROGRAM,

98

C
C

C

97
99

SUBROUTINE STNSSL

AUTHOR-

LANGUAGE-
D, A, NAGY
ICETRAN

THIS SUBROUTINE ACTS AS AN INTERFACE BETWEEN THE SYSTEM

AND A NON-SYMMETRIC SOLVER ORIGINALLY WRITTEN FOR ANOTHER

SYSTEM, IT TRANSFERS THE PORTION OF THE LOAD/ROTATION

VECTOR FOR EACH INDEPENDENT LOADING TO AN ARRAY COMPATIBLE

WITH THE SOLVER AND THEN CALLS THE SOLVER ONCE FOR EACH

INDEPENDENT LOADING CONDITION, AFTER EACH SOLUTION_ IT

TRANSFERS THE RESULTS BACK INTO THE ARRAY KPPRI FOR USE

BY THE I_ACKSUBSTITUT!ON PHASE PROGRAMS,

COMMON KDANG_NCUT_FILLl(98)_NSOLoNN_NLDSIoFILL2(59)pFPMAT(P)
COMMON FCFOR(P)_KPPRI(P)
DYNAMIC ARRAY FPMAToFCFORtKPPRI(R)
NCUT=NSOL
DEFINE FPMATt2*NCUTgFULL

LOOP ON ALL ACTIVE, INDEPENDENT LOADING CONDITIONS,

TRANSFER LOAD/ROTATiONS VECTOR PORTION FROM KPPRI TO

FPMAT AND CALL NON-SYMMETRIC SOLVER STNDUM

DO 99 L:IoNLDSI

DO 98 N:IgNCUT
FPMAT(2*N-I)=KPPRI(Nt2*L-1)

FPMAT(2WN):KPPRI(N_2*L)
CALL STNDUM

TRANSFER RESULTS FROM FCFOR BACK TO KPPRI

DO 97 N:IgNCUT

KPPRI(Nt2*L-1):FCFOR(N_I)
KPPRI(N_2*L):FCFOR(N_2)

CONTINUE

NSOL=NCUT

RELEASE KPPRI
DESTROY FPMAT

DESTROY FCFOR

RETURN

END
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BACKSUBSTITUTIONPHASE,

SUBROUTINESTNBKS
C

C AUTHOR- D, A, NAGY

C LANGUAGE- ICETRAN

C

C THIS IS THE EXECUTIVE FOR THE BACKSUBSTITUTION (AND

C TEMPORARILY THE OUTPUT) PHASE,
C

6O

62

63

61

C
C
C
C

1
C
C
C
C

2

0
I PE(2)

COMMON
COMMON
COMMON
COMMON
COMMON
COMMON
COMMON
COMMON SFTEMP
DYNAMIC ARRAY
DYNAMIC ARRAY
DYNAMIC ARRAY
DYNAMIC ARRAY

DIMENSION ND(3),X(3),Y(3),U(3),V(3),A(3)tB(3),E(_),S(3),PS(2),

FILLI(IOOi,NSOL,DFILL(49),LEXT(P},FILL2(14),KPPRI(P)

FILL3(87},LEXTN

LTYP(P),FILL4(3),LDTLE(P),FILL5(3),JEXTNtFILL6(5),JTXYZ(P}

FILL7(47),NJ,NFILL,NLDSI,FILL8(9),JEXT(P)gFILL9(30)

ELPROP(P),FILLlO(18)DNBXTELoNDFIL,NSYM_FILLII(12),NODISP(PI
STRAIN(P}

STRESS(P),PRSTRN(P),PRSTRS(P),FILL12(5),IPROB,FILLI3(ll)
(P),RNDTEM(P)

NODISP(R),SFTEMP,STRES$,STRAIN,PRSTRS,PRSTRN

RNDTEM,JEXT,LDTLE(R),ELTOP(1),JTXYZ(R),ELPROP
KPPRI(R),LEXT

LTYP

DEFINE NODISP AND TRANSFER RESULTS FROM KPPRI TO NODISP,

COMPUTE RESULTS FOR DEPENDENT LOADING CONDITIONS,

DEFINE NODISP,LEXTN_JEXTNo6
DESTROY NODISP

DO 60 I:IoNJ
DO 60 L:I,NLDSI
LDN=LEXT(L)

JTN=JEXT(1)
NODISP(LDN,JTN,I):KPPRI(I,2*L-1)

NODISP(LDNtJTN,2)=KPPRI(I,2*L)
DO 61 L=I,LEXTN

J:LTYP(L)+I

GO TO (62,62,61,61,62,62,61P61)oJ

NLC:LDTLE(L,17)

DO 63 M=I,NLC

DO 63 N=I,JEXTN

NODISP(L,N,1)=NODISP(L,N,I)+NODISP(LDTLE(L,16+2*M),N,I)*LDTLE(L,

16+2"M+I}

NODISP(L,N,2)=NODISP(L,N,2}+NODISP(LDTLE(L,16+2*M),N,2)*LDTLE(L,
17+2"M}

CONTINUE

IF(IPROB) 1,2,2
IF(IPROB+2) 3,3,2

DEFINE ARRAYS FOR STORAGE OF ELEMENT STRESSES AND
STRAINS, PRINCIPAL STRESSES AND PRINCIPAL STRAINS,

DEFINE STRESS,LEXTNoNBXTELt6
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7

I0

9

12
Ii

14

13

16

15

17

C
C

C

C

C
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DESTROY STRESS

DEFINE STRAIN,LEXTNoNBXTELo6

DESTROY STRAIN

DEFINE PRSTRS,LEXTN�NBXTELt4

DESTROY PRSTRS

DEFINE PRSTRN,LEXTNINBXTEL,4

DESTROY PRSTRN

LOOP ON ALL ELEMENTS

DO 99 NE=ItNBXTEL

DO 4 I=193

ND(1)=ELTOP(NE,I+I)

OBTAIN COORDINATES OF NODES INCIDENT UPON

AND ELEMENT PROPERTIES,

CURRENT ELEMENT

X(1)=JTXYZ(ND(I},I)

Y(I}=JTXYZ(ND(1)_2)

A(1)=-X(2)+X(3)

A(2)=-X(3)+X(1)
A(3)=-X(I}+X(2)

B(1)=-Y(2}+Y(3)

B(2)=-Y(9)+Y(1)
B(3}=-Y(1)+Y(2}
AREA=O,5*ABS(X(1)*B(I}+X(2}WB(2)+X(3)_B(3))

CTX=ELPROP(NE,IO)
IF(CTX) 5_6,5

CTX=ELSTCT
CTY=ELPROP(NE,I1)

IF(CTY) 7o8,7

CTY=CTX

EX=ELPROP(NEo6)

IF(EX) 9,10_9

EX=ELSTDE
EY=ELPROP(NEoT)

IF(EY) 11o12,11
EY=EX

PX=ELPROP(NEo8)

IF(PX} 13o14t13
PX=Et.STPO

G=ELPROP(NEt12)

IF(G} 15o16,15

G=ELSTOG

H=ELPROP(NE92)

DO 99 LOzI,LEXTN

DO 17 I=Ii3
U(1)=NODISP(LO,ND(1)ol}

V(1)=NODISP(LOoND(1)_2}

CALL STESTR OR STESCP TO COMPUTE ELEMENT STRESSES,

STRAINS,ETC,, DEPENDING ON WHETHER THE PROBLEM JUST

SOLVED WAS STRETCHING OR BENDING,

IF(IPROB) 1Bo19,19
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3O
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28

24
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IDEL=3

JDEL:2

CALL STESCP(EX,EYoPX,CTX,CTYtGtHpLO_NE_AREA,AtB,U,VoE_StPStPE}

GO TO 20

IDEL:O
JDEL:O

CALL STESTR(EX,EY,PX,CTX,CTYpG,LO,NEgAREA_A,B_U,V_E,S,PS_PE}

=S(1)
:E(1)

:PS(I}

:PE(I}

=S(3}
:E(3)

DO 21 I:Io2

STRESS(LO_NE_I+IDEL)
STRAIN(LOoNEgI+IDEL)

PRSTRS(LOpNE_I+JDEL)

PRSTRN(LOoNE_I+JDEL)

STRESS(LOpNEo3+IDEL)

STRAIN(LOoNEo3+IDEL}

IT=IPROB+3

GO TO (22922o24923,23),IT

STORE STRESS FUNCTIONS

NODAL DISPLACEMENTS (X

BACK TO NODISP,

IN ARRAY SFTEMP AND TRANSFER

AND Y COMPONENTS} FROM RNDTEM

DEFINE SFTEMP,LEXTNoJEXTN_2

DO 25 I:IoLEXTN

DO 25 J:I_JEXTN
SFTEMP(I,J,1)=NODISP(I,J,I)

SFTEMP(19J,2)=NODISP(I,J,2)

GO TO (26t27},IT

NODISP(I_J'tl}=RNDTEM(I,J,1}

NODISP(I,Jt2)=RNDTEM(I,J,2)

GO TO 25

NODISP(I_J,I)=O,

NODISP(I_J,2)=O,

CONTINUE

GO TO (28o29),IT

TRANSFER NODAL DISPLACEMENTS TO
SO THAT NODISP WILL BE FREE FOR

WHICH IS NEXT,

TEMPORARY ARRAY RNDTEM

BENDING SOLUTION PFASE,

DEFINE RNDTEM,LEXTN,JEXTN,2
DO 30 I:IoLEXTN

DO 30 J=I,JEXTN

RNDTEM(I,J,I)=NODISP(I,J,I)

RNDTEM(IgJ,2}=NODISP(I,J,2}

RELEASE RNDTEM
GO TO 24
DESTROY RNDTEM
RELEASE SFTEMP

RELEASE STRESS
RELEASE STRAIN

RELEASE PRSTRS

RELE%SE PRSTRN

RELEASE NODISP
RELEASE ELTOP

RELEASE JTXYZ
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RELEASE ELPROP

DESTROY KPPRI

IF(IPROB-2} 31932o32

IF PROBLEM IS COMPLETELY FINISHEDo CALL TEMPORARY OUTPUT

SUBROUTINE STNOUT AND RETURN,

CALL STNOUT

RETURN

IF PROBLEM IS GENERAL PLATE PROBLEM, CONSTRUCT STACK

OF PROGRAMS FOR BENDING SOLUTION PHASE AND TRANSFER

TO THE FIRST PROGRAM IN THE STACK.

1_"0

I02

I01

IPROB:-2

NSOL:NJ

IF(NSYM-1} 31,100,101
ADD TO STACK (I,'STNBKS t)

ADD TO STACK (I_tSTSLVR I)

ADD TO STACK (I,ISTNBCM I)
ADD TO STACK (ltISTEASSt)

ADD TO STACK (1.1STNGEN I)
TRANSFER TO STACK

ADD TO STACK (I,tSTNSASI)

GO TO 102

END
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SUBROUTINE STESTR(EX,EY,PX,CXoCY,GtLoN,ARtA,B,U,V,E,S,PS,PE)

AUTHOR- D. A. NAGY

LANGUAGE- ICETRAN

THIS SUBROUTINE COMPUTES THE ELEMENT STRESSES,STRAINS,

PRINCIPAL STRESSES, AND PRINCIPAL STRAINS FOR THE ELEMENT
WHOSE PROPERTIES ARE PASSED TO IT AS ARGUMENTS.

THE COMPUTED VALUES ARE RETURNED IN THE DIMENSIONED
ARRAYS E,S,PS, AND PE,

DIMENSION AI3),B(3),U(3),V(BiiE(3),S(3),PE(2),PS(2)
COMMON FILL(367),ELOADS(P)

DYNAMIC ARRAY ELOADS

E(1)=-O.5*(BII)*UII)+Bi2)*UI2)+BI3)*U(3))/AR
E(2)=O,5*(A(1

OE(3)=O,5*(A(1
1 B(_)*V(3))/A

II=IDEF(JNK,J
IF(II) 1,1,2

)*V(1)+A(2)*V(2)+A(3)*V(3))/AR
)*U(1)-B(1)*V(I)+A(2)*U(2)-B(2)*V(2)+A(3)*U(3)-
R

NK,JNKoELOADS,N,L)

ADD TEMPERATURE STRAIN ROUTINE HERE LATER
DUMMY STATEMENT NO. 2 FOR NOW • . .

GO TO I

EXT=O,

EYT=O.
EXL=E(1)-

EYL=E(2)-
PY=EX*PX/

S(1)=EX*(
S(2)=EY*(

S(3)=G*E(

EXT

EYT

EY
EXL+PX*EYL)/(1.-PX*PY)
EYL+PY*EXL)/(I.-PX*PY)

3)
SXP=SQRT(((S(
SYP=(S(1)+S(2
PS(!)=SXP+SYP
PS(2)=SYP-SXP
EXP=SQRTI((E(
EYP=(E(1)+E(2
PE(1)=EXP+EYP
PE(2)=EYP-EXP
RETURN
END

11-S(-2))*'2,)/2,

11120

I)-E(2))*'2,)/2,

))/2,

+ S(3)*'2.)

+ (E(3)/2.)*'2.)
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C
C
C
C
C
C
C
C
C

C

2

i
4
3

5
6

C
C
C
C

I0
9
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SUBROUTINE STESCP(EXtEY,PX_CXoCYtGtHDLtNtARtA_B,UtV,Eg$tPStPE)

AUTHOR- D. A. NAGY
LANGUAGE- ICETRAN

THIS SUBROUTINE COMPUTES THE BENDING STRESS COUPLES_

CURVATURES9 PRINCIPAL COUPLESt AND PRINCIPAL CURVATURES

FOR THE ELEMENT WHOSE PROPERTIES ARE PASSED TO IT AS

ARGUMENTS, THE RESULTS ARE RETURNED IN THE DIMENSIONED

ARRAYS E,S,PStAND PE,

DIMENSION A(3),B(3)tU(3),V(3)DE(3}tS(3)tPE(2)_PS(2),NODE(3)

COMMON FILLl(365)pELTOP(P),ELOADS(PIgFILL2(52)_PBSOLN(P)

COMMON PBSOLE(P)_FILL3(4)tIPRTIC(P}

DYNAMIC ARRAY ELOADSoPBSOLE_IPRTIC,PBSOLN_ELTOP(1)

PY=EX_PX/EY

DX=EXW(H_3.)/(12o_(1.-PX_PY))
DY=EY_DX/EX

IF(IPRTIC(L}) 1D1_2
RKX=PBSOLE(LDNtl)/AR

RKY=PBSOLE(LoN92)/AR
GO TO 8

IF(PBSOLE(L,N,1)) 3p_,3

IF(PBSOLE(LgNt2)) 3_5,3
RKX:PBSOLE(LDNDI)

RKY=PBSOLE(LDNo2)
GO TO 8

DO 6 I=i_3

NODE(1)=ELTOP(N_I+I)
RKX:O,

RKY:O,

DO ? I=193

RKX:RKX+PBSOLN(LDNODE(1)tl}/3e
RKY=RKY+PBSOLN(L,NODE(1),2)/3,

SCXP=-DX*(RKY+PX_RKX)

SCYP=-DY*(RKX+PY*RKY)

S(1)=O.5*(A(1}*V(1)+A(2)*V(Z)+A(3)*V(3))/AR
S(2)=-O,5*(B(1}*U(1)+B(2)*U(2)+E(3)*U(3))/AR

OS(3)=-O,25*(A(1)*U(1)-B(1)*V(1)+A(2)*U(2)-B(2)*V(2)+A(3)*U(3)

1 B(3)*V(Z))/AR
E(1}=12ow(S(1}-PY_S(2})/(EX_H_3_)-RKY
E(2)=12,_(S(2)-PX_S(1))/(EY_H_ge)-RKX

E(3)=(12o/(G_H_w3,))_S(3)

II=IgEF(JNK,JNK,JNK,ELOADS_N_L)

IF(If) 9_9_10

ADD TEMPERATURE CURVATURE ROUTINE HERE LATER

DUMMY STATEMENT NO, i0 FOR NOW

GO TO 9

EXT=O,

EYT=O.

E(1)=E(1)+EXT

E(2):E(2I+EYT

S(1)=S(1)+SCXP
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S(2)=S(2)+SCYP
SXP=SQRT(((S(1)-S(2))_*2,}/2o
SYP=(S(1}+S(2))/2,
PS(1):SXP+SYP
PS(2}=SYP-SXP

EXP=SQRT(((E(1)-E(2})_2o}/21

EYP=(E(1)+E(2})/2o

PE(1}=EXP+EYP
PE(2)=EYP-EXP
RELEASE PBSOLE
RELEASE PBSOLN
RELEASE ELTOP
RELEASE IPRTIC
RETURN
END

+ S(3)*_2,)

+ E(3)_2o)
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C
C
C
C
C
C
C
C
C
C
C
C
C

10

21
2O

3O

SUBROUTINE STNOUT

AUTHOR- Do A, NAGY

LANGUAGE- ICETRAN

THIS SUBROUTINE IS A TEMPORARY OUTPUT SUBROUTINE

INCLUDED IN THE LOAD MODULE STNBKS. IT OUTPUTS THE

NODAL DISPLACEMENTS FOR THE STRETCHING PROBLEM ONLYt THE

ELEMENT CENTERED VALUES OF STRESS,STRAINoPRINCIPAL

STRESS, AND PRINCIPAL STRAIN FOR THE BENDING AND STRETCHING

PROBLEMS. THIS OUTPUT IS PRODUCED WITHOUT THE REQUEST

OF THE USER,

COMMON FILLI(250),LDID(P),FILL2,LEXTN,FILL3(7),JTID(P)tFILL4'JEXTN

COMMON FILLS(94),ELID(P),FILL6(22),NBXTELoFILLT(l_)'NGDISP(P}

COMMON STRAIN(P),STRESS(P)tPRSTRN(P)oPRSTRS(P)
DYNAMIC ARRAY LDID(D)tJTID(D)tELID(D),NODISP(R),STRESS,STRAIN

DYNAMIC ARRAY PRSTRS,PRSTRN

DIMENSION DATA(6),PDATA(4)

DOUBLE PRECISION DUMI

WRITE (6,101)
WRITE (6t117)

DO 99 L=IgLEXTN

DUMI=LDID(L)

WRITE (6o101}
WRITE (GtlO0) DUMI

WRITE (6,101)
WRITE (6,102)

WRITE (6,103)

DO 10 J=IoJEXTN

DUMI=JTID(J) *
DUM2=NODISP(L,J,1)

DUM3=NODISP(LtJ,2)

WRITE (6,104) DUMI,DUM2,DUM3

WRITE (6,101)

WRITE (6,105)

WRITE (6t106}

DO .20 I=I,NBXTEL

DUMI=ELID(1)

DO 21 N=I,6
DATA(N)=STRESS(L,I,N)

WRITE (6t107) DUMIo DATA

WRITE (6,101)

WRITE (6_I08)

WRITE (6,109}

DO 30 I=ItNBXTEL

DUMI=ELID(1)

DO 31 N=1,6
DATA(N)=STRAIN(LtI,N)

WRITE (6,110) DUM1, DATA

WRITE (6,101)

WRITE (6,111)

WRITE (6,112)
DO 40 I=I,NBXTEL
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41
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51

50
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I00
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DUMI:ELID(1)
DO 41 N=1O4

PDATA(N)=PRSTRS(L.ItN)

WRITE (69113) DUMIt PDATA

WRITE (6oi01}

WRITE (6o114)
WRITE (6,115)

DO 50 I=IoNBXTEL

DUMI=ELID(1)

DO 51N=1_4

PDATA(N)=PRSTRN(L_I,N)

WRITE (6t116) DUM1, PDATA
CONTINUE

RETURN

FORMAT(19H

FORMAT(IH

FORMAT(20H

FORMAT(23H

FORMAT(A8o2

FORMAT(17H

OFORMAT(65H

I MXY)
FORMAT(A8o3
FORMAT(16H

OFORMAT(66H
1 CHI-XY)

FORMAT(A8t3
FORMAT(27H
FORMAT(44H'

FORMAT(A8o2
FORMAT(26H
FORMAT(45H'
FORMAT(A8m2
FORMAT(38H
END

LOADING CONDITION o A8}

)

NODAL DISPLACEMENTS}

NODE U V}

F10,6}

ELEMENT STRESSES}

ELEMENT SX SY

FIO,2t3FIO,1)

ELEMENT STRAINS)
ELEMENT EX

FIO,7,3FIO.6)
ELEMENT PRINCIPAL

ELEMENT SI

FIO,2t2FlO.1)
ELEMENT PRINCIPAL

ELEMENT E1
FIO,7t2FIO.6)

UNITS ARE INCHESt

EY

STRESSES )

$2

STRAINS)
E2

POUNDS_

SZ

GAMMA-XY

M1

CHI-I

AND RADIANS)

MX

CHI-X

M2)

CHI-2)

MY

CHI-Y
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APPENDIX 8

Programmer's Information

AS-I Introduction

This appendix is intended to serve as a L_ide to someone

with a good knowledge of FORTRAN-IV progr_aing for completing

the debugging of the system developed in this thesis or

adding to its capabilities.

A8-2 Progra_ruain_ LanL_ages

a) All computer prograJ_ing for the system developed in

this taesis was done within the context of the Integrated

Civil Engineering _yste1_ (ICES) being developed by the i_IT

,)epartment of Civil Engineering. For a general overview of

ICES, the progra_er should consult

"ICES: COliCEPTS AIID FACILITIES," Department of Civil

Engineering, IVIIT, 1965.

b) The routines for reception of input,i.e., the defi-

nitions of t_a problem-oriented co_aands described in Chapter

4, were written in Coi_Land Definition Language (CDL), which is

itself a problem-oriented language that may be learned relatively

quickly. For a discussion of the philosophy of problem-

oriented languages within the context of ICES, refer to Chapter

of "ICES: Concepts and Facilities." Tae User's l.lanual for

COL is Chapter 3 of

"ICES: Progra_ner's Guide," !_epartment of Civil Engineering,

!,lIT, 1965.

and provides a complete descriptiorJ and some examples of CDL

coffee,ands. If a_ditional questions arise concerning some

aspect of CDL, the progra_[_er should consult IY.r. Ronald A.

Walter, instructor in the J_IIT Depart_ent of Civil E_gineering,

who wrote the Con_r[and Definition Language.

c) 'i'Ve subroutines for processing and storage of input

(lata, solution of the specified problem(s), and output of
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results were written in ICETRAN (ICES-FORTRAN). ICETRAN is

the FORTItAN-IV language with the added capability of more

flexible data array storage (dynamic memory allocation) and

other forms of program linkage in addition to the CALL state-

ment of FORTRAN. ICETRAN programs are first processed by a

pre-compiler that translates the program into legitimate

FORT_RA!C with calls to ICES library subroutines to perform the

various tasks of the ICe, RAN statements. The resulting

translated program is then processed by the FORTRAN-IV com-

piler.

The philosophy of dynamic memory allocation and dynamic

program linkage is discussed in Chapt. of "ICES: Concepts

and Facilities." The detailed description of all ICETRAN

cow,hands is contained in Chapter 2 of "ICES: Progra_ner's Guide."

A8-3 STRUDL Subsystem and the Finite Element Analyzer

The progra_mning system of this thesis was developed in

the form of additions to STRUDL (STRUctural Design Lan&_age),

a problem-oriented language subsystem of ICES for problems in

structural engineering. In particular, these additions apply

directly to the Finite Element Analyzer, a portion of the

STRUDL subsystem which deals directly with the application of

the finite element method. Initial documentation of the

Finite Element Analyzer is given in

Ferrante,A.J., "A System for Finite Analysis," S._i. Thesis,
Department of Civil _ugineering, _EIT, January 1967.

but its author _C_r. Ferrante, an instructor in the _2IT Civil

Engineering Department, should be contacted to obtain the most

recent version. The programmer should be thoroughly familiar

with the input cooL, ands, dynamic ICETRAN data arrays, and

COi,_iON data storage of the Finite Element Analyzer before

working with the programs of this thesis. The data arrays used

to store the symmetric global stiffness/flexibility matrix

are most completely described in

I,_O IS 21.3 - Non Linear Analysis in STRUDL - Data
Structure.
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Tile arrays used for the storage of the non-sy_mnetric global

matrix are given here for lack of current aocumentation

elsewhere.

1. Storage array:

FCIvI_T(I, J, K )

where

I= hypercolumu of the gl_h_1 _+_uctural o+_ .... /

flexibility matrix

J= row

K= column within hypercolumn I (1 or 2)

2. Bookkeeping arrays:

ICUREL (I ,J )

where

I= hypercolumn

J= number of Jth non-zero row in Ith hypercolumn

fEEL1 (I, J )

where

I= row of the global matrix

J= 0 if Jth hypercolumn of row I is zero

= 1 if Jth _lypercolumn of row I is non-zero

A8-4 Rtu;nin_ of CDL I ICETRAN I and STRUDL-Finite Element Analyzer

Programs on the Computer

The programs of this thesis were written to be run under

the CESL (Civil Engineering Systems Laboratory) _lonitor on

the II_ System/360 computer in the I,iIT _oepartment of Civil

Engineering. A description of the necessary control cards

and program deck arrangements for all types of computer runs

necessary to modify and use the system of this thesis is given

in

IG iJ_O 32, "The "{_e of CESL ICES and OS ICES to Create,

Modify, and Run _uOsystems," Iv_IT Department of Civil

Ah:gineering, April 26, 1967.

;)ecks to be run are submitted in the bins located in room 1-147,
I
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adjacent to the IB_I S_stem/360 room. Jobs with an esti_ed

running time of less than five minutes are submitted in the

express bin and are "usually" run twice a day. Jobs of

longer duration are run during the night if time per_.lits.

A8-5 Interpretation of Output and Debugging Aids

a) CDL - execution of CDI programs includes reprinting

each CDL cow,hand. Any error messages immediately

follow the conn_land that caused them, and are usually

quite adequate for understan.:_ing the error co_nitted.

If the number 1 appears on the line following the

FILE command ending a CDL program, it means that the

program was interpreted successfully and the comJnand

defined is now a part of _ne complete dictionary of

coL_l_ands on the disk files.

O) ICETRAN SUBROUTIi_ES -compilation of ICETRAI, _ subroutines

begins with a complete Listing of the ICETRA_I program

as it is being processed by the precompiler. Any

error messages in_aediately follow the statement that

caused them. A complete description of the meaning

of IOETRAN Precompiler error messages is contained in

Chapt. of "Iu_o : ProgTsm_duer 's Guide." Following the

listing of each subroutine is a CO_v_ii_0Nmap giving the

relative location of each COi,ihON variable from the

beginr_ing of C0!JI,i0N.

If no errors are detected by the precompiler, the

programs are then processed by the FORTRAN compiler.

In this process_, the.translated FORTRA_I progr_ is

listed, with each line numbered consecutively. This

listing is followed by a list of COiv_vJDNreliables,

local variables, constants, and statement nu_1_bers, with

the relative locations of each given in the hexadecimal

(base 16) number system. If any errors were detected

in the Fortran compilation, the messages are printed

after the list of COrv_10N variables, local variables,

constants, and statement numbers. A complete explanation

of these error messages may be found in
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IB_I System/360 BPS, FORTRANIV 360P-FO-031,
Programmer's Guide, C28-6583 (Appendix A).

A discussion of some of the more colmnon error messages in

compilation and execution of FOI_TRA_Tprograms, and bugs in
the FORTRA_ compiler, may be found in

CESL. E_i£O25 (C,]rs. Jane Jordan),"User's Guide to CESL
_lonitor System," ]_lay 5, 1967.

Any problems not clarified by the above two documents should

be taken to Iv_s. Jane Jordan in Room 1-153.

c)Load _iodule Generation - the grouping of subroutines together

in a package and storage of this package on the disk files of

the _TRUDL Subsystem is accomplished by Linkage Editor runs.

These runs precompile and compile each subroutine, as discussed

in item b) above. If no errors are detected in any of the

compilations, the package of programs is filed on the disk.

A storage map is printed giving the relative locations (in

hexadecimal number system) of all subroutines and ICES library

routines included in the Load _v[odule. If all these routines

are found during the packaging and added to the load module

package, the message LOADING C01_ZPLETEis printed.
r

d)Subsystem Execution - if errors occur during execution of one

of the subroutines of the subsystem, the error message causing

termination of the job may not always make the nature of the

error evident. In the case of any error in dynamic array

storage or retrieval, a fairly brief error message is printed

giving the nature of the error and hexadecimal program loca-

_ tion (object program) where the error occurred. By referring

to the list of relative locations of statement numbers at

the end of the Fortran compilation and the Storage Map at the

end of the Load _1odule formation run, the progr_n_er can

determine approximately where the error occurred in the original

ICETRAN source program.

Example :

The following message might appear during subsystem

exe cut ion:
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1014479 4000E480

ERRORIN DYN_viIC ARRAY STORAGEOR RETRIEVAL AT THE
PROGRA_ILOCATION SHOWNABOVE

The last four digits of the number undelined by asterisks

is the progrsun location. From this number should be

subtracted the ntunber DFO0, which is the location of

the first subroutine of the load module currently being
used.

E48C

-DF00

580

This number is then the relative location of the error

within the load module. Referring to the Storage _[ap

of the load module, it is seeu that the first subroutine

of the load module is stored at 2600. Thus adding 58C

to 2600 will yield the relative location where the error

occurreo in the Storage Map. It may then easily be

seen in which program this location falls. Subtracting

the storage map location of the beginning of the par-

ticular program from 2600+58C will then yield the relative

location within the program. This location may be com-

pared to the relative locations of numbered statements,

which is found at the end of the FORTRAN compilation

of the program.

Errors other than dynamic array storage and retrieval

are more difficult to trace. The following debugging

co--ands may be inserted in the subsystem job runs to

obtain more information about the execution of the job

at the time that the error occurred:

DBGXC 0

This command causes the course of action of the Execution

Coordinator to be explicitly stated from the point where

DBGXCO is inserted until the end of the job. The

Execution Coor¢linator obtains modules from the disk files

and directs the cow,purer to execute particular programs

according to the specifications of CDL or the previous
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subroutine executed. The programmer can then tell if

all programs that are supposed to be executed actually

are being executed in the proper order and also exactly
which program was being executed when the error occurred.

DBGALL

This co_and causes a complete dump of the core storage

area where the current load module is stored during its

execution. The dump occurs after the error is detected,

so that it shows the status of the program at the time
that the error occu_ed. _s. Jane Jordan should be

consulted for interpretation of the results of the dump.

POOLDP

This co_rLu_mdcauses a complete dump of COf,_ON storage

s_rea plus the data pool of arrays currently in the

comput er.

PRINT '.)ATA

This co_Land causes all data relating to nodes that has

been input by the user to be printed out.

_AGY DE±{UG

This conu_and prints out the constructed boundary chains,

specified boundary con_litions, dislocations, nodal loadings,

and specified values of the particular bending solution or
co_puted exact values.

For additional debugging aids, interpretation of

debugging information, and general counseling on location

of bugs in the system, the progra_mr_er is referred to
l,_s. Jane Jordan in Room 1-153.
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APPENDIX 9

SAMPLE PROBLEM

/JOB (NAME}

/ASSIGN 3:ICES

/ASSIGN 2=STRUDL

/RESTORE SYSI

STRUDL

PROBLEM IEXAMPLEI 0DUAL METHODI

UNITS FEET POUNDS RADIANS

TYPE DUAL PLATE GENERAL NONSYMMETRIC

NODE COORDINATES

1 X O, Y 2, B

2 X i, Y 2, B

3 X 2, Y 2, B

4 X 2, Y I, B

5 X 2, Y O, B

6 X I, Y O, B

7 X O, Y O, B

8 X O, Y i, B

9 X I, Y I,

ELEMENT INCIDENCES

1821

2892

3932

4943

5798

6769

7649

8654

BOUNDARY INCIDENCES

°OUTER t 1

UNITS KIPS
ELEMENT PROPERTIES

(ACCOUNT NUMBER}

1 TO 8 THICKNESS ,25 DENSITY ,15 TYPE IFTODt G 8000,

1 TO 4 EX 430000, EY 200000, PX ,18

5 TO 8 EX 200000, PX ,15

BOUNDARY CONDITION tOUTER' RIGID FREE

XP 2,0 YP 2,5 FX ,2 FY ,3 MP ,13

3 TO i CHI O, EPSILON O,

CLAMPED EDGE tOUTER' ? TO 5

BOUNDARY CONDITION DISPLACEMENT BENDING

i TO 7 W ,022 R 0,

3 TO 2 W O, R O,

UNITS POUNDS

LOADING '$AMPLEI I IEXAMPLE OF LOADING COMMANDS t

NODE LOADS

8 FORCE X 200, Y 300,

4 FORCE X 250,
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LINE LOAD

7 FORCE X 100,

9 FORCE X 200o

3 FORCE X I00o

GRAVITY LOAD ANGLE-X O. ANGLE-Z lo10

LOADING oSAMPLE2 o OEXANPLE OF SPECIFIED PARTICULAR BEN_, SOLoO

BENDING PARTICULAR SOLUTION

NODES 1 2 3 KX O, KY eO03

NODES 8 9 4 KX Oo KY o006

NODES ? 6 5 KX O, KY o002
END

LOADING °SAMPLE3O OEXAMPLE OF STANDARD PARTICULAR SOLUTIONO

BENDING PARTICULAR SOLUTION UNIFORM LOAD 100, C Co5
LOADING LIST oSAMPLEll oSAMPLE2O

FINITE ANALYSIS

FINISH

/END OF FILE


